File size: 8,918 Bytes
d32b059
673afb6
d32b059
 
 
 
 
 
dd97d98
d32b059
dd97d98
 
673afb6
 
d01d233
673afb6
dd97d98
673afb6
 
d32b059
 
673afb6
 
 
 
 
d32b059
673afb6
dd97d98
d32b059
 
673afb6
d32b059
 
 
 
 
 
7f79518
d32b059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f79518
d32b059
 
 
 
 
 
78b453d
d32b059
 
dd97d98
d32b059
 
 
 
 
 
 
 
 
 
 
dd97d98
 
d32b059
 
 
 
 
 
 
 
 
 
 
 
dd97d98
 
 
d32b059
 
 
 
 
 
 
 
 
 
 
 
 
078e192
d32b059
 
 
 
 
 
 
 
 
dd97d98
 
 
 
d32b059
 
 
 
 
 
 
 
 
 
 
 
dd97d98
 
 
9b54eec
dd97d98
 
 
 
 
 
 
 
 
 
 
 
 
7f79518
 
 
 
 
 
45a4204
 
 
 
 
 
 
 
 
d32b059
 
5482b54
d32b059
 
 
 
 
 
 
 
 
 
 
dd97d98
d32b059
 
 
 
 
 
dd97d98
d32b059
 
 
 
 
 
b66dbaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import numpy as np
import pandas as pd
import re
from pydub import AudioSegment
from pydub.generators import Sine
import io
# import torch

# device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_id = "openai/whisper-whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, low_cpu_mem_usage=True, use_safetensors=True
)
# model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=30,
    batch_size=8,
    # device=device,
)


arabic_bad_Words = pd.read_csv("arabic_bad_words_dataset.csv")
english_bad_Words = pd.read_csv("english_bad_words_dataset.csv")


def clean_english_word(word):
    cleaned_text = re.sub(r'^[\s\W_]+|[\s\W_]+$', '', word)
    return cleaned_text.lower()

def clean_arabic_word(word):
    pattern = r'[^\u0600-\u06FF]'
    cleaned_word = re.sub(pattern, '', word)
    return cleaned_word

def classifier(word_list_with_timestamp, language):

    foul_words = []
    negative_timestamps = []

    if language == "English":
        list_to_search = set(english_bad_Words["words"])
        for item in word_list_with_timestamp:
            word = clean_english_word(item['text'])
            if word.lower() in list_to_search:
                foul_words.append(word)
                negative_timestamps.append(item['timestamp'])
    else:
        list_to_search = list(arabic_bad_Words["words"])
        for item in word_list_with_timestamp:
            word = clean_arabic_word(item['text'])
            for word_in_list in list_to_search:
                if word_in_list == word:
                    foul_words.append(word)
                    negative_timestamps.append(item['timestamp'])   
        
    return [foul_words, negative_timestamps]

def generate_bleep(duration_ms, frequency=1000):
    sine_wave = Sine(frequency)
    bleep = sine_wave.to_audio_segment(duration=duration_ms)
    return bleep

def mute_audio_range(audio_filepath, ranges, bleep_frequency=800):
    audio = AudioSegment.from_file(audio_filepath)
    for range in ranges:
        start_time = range[0]
        end_time = range[-1]
        start_ms = start_time * 1000  # pydub works with milliseconds
        end_ms = end_time * 1000
        duration_ms = end_ms - start_ms
        
        # Generate the bleep sound
        bleep_sound = generate_bleep(duration_ms, bleep_frequency)
        
        # Combine the original audio with the bleep sound
        audio = audio[:start_ms] + bleep_sound + audio[end_ms:]

    return audio

def resample_audio(audio_segment, target_sample_rate=16000):
    return audio_segment.set_frame_rate(target_sample_rate).set_channels(1).set_sample_width(2)

def format_output_to_list(data):
    formatted_list = "\n".join([f"{item['timestamp'][0]}s - {item['timestamp'][1]}s \t : {item['text']}" for item in data])
    return formatted_list

def transcribe(input_audio, audio_language, task, timestamp_type):
    if input_audio is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    if timestamp_type == "sentence":
        timestamp_type = True
    else:
        timestamp_type = "word"

    output = pipe(input_audio, return_timestamps=timestamp_type, generate_kwargs={"task": task})
    text = output['text']

    timestamps = format_output_to_list(output['chunks'])

    foul_words, negative_timestamps = classifier(output['chunks'], audio_language)
    foul_words = ", ".join(foul_words)


    audio_output = mute_audio_range(input_audio, negative_timestamps)

    # Resample the output audio to 16kHz
    audio_output = resample_audio(audio_output, 16000)

    # Save the output audio to a BytesIO object
    output_buffer = io.BytesIO()
    audio_output.export(output_buffer, format="wav")
    output_buffer.seek(0)
    
    # Read the audio data from the BytesIO buffer
    sample_rate = audio_output.frame_rate
    audio_data = np.frombuffer(output_buffer.read(), dtype=np.int16)

    return  [text, timestamps, foul_words, (sample_rate, audio_data)]

examples = [
        ["arabic_english_audios/audios/arabic_audio_11.mp3", 'Arabic', 'transcribe', 'word'],
        ["arabic_english_audios/audios/arabic_audio_12.mp3", 'Arabic', 'transcribe', 'word'],
        ["arabic_english_audios/audios/arabic_audio_13.mp3", 'Arabic', 'transcribe', 'word'],
    
        ["arabic_english_audios/audios/english_audio_18.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_19.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_20.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_21.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_22.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_23.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_24.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_25.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_26.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_27.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_28.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_29.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_30.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_31.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_32.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_33.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_34.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_35.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_36.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_37.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_38.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_39.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_40.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_41.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_42.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_43.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_44.mp3", 'English', 'transcribe', 'word'],
        ["arabic_english_audios/audios/english_audio_45.mp3", 'English', 'transcribe', 'word'],
    ]

with gr.Blocks(theme=gr.themes.Default()) as demo:
    gr.HTML("<h2 style='text-align: center;'>Transcribing Audio with Timestamps using whisper-large-v3</h2>")
    # gr.Markdown("")
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(sources=["upload", 'microphone'], type="filepath", label="Audio file")
            audio_language = gr.Radio(["Arabic", "English"], label="Audio Language")
            task = gr.Radio(["transcribe", "translate"], label="Task")
            timestamp_type = gr.Radio(["sentence", "word"], label="Timestamp Type")
            with gr.Row():
                clear_button = gr.ClearButton(value="Clear")
                submit_button = gr.Button("Submit", variant="primary", )

        with gr.Column():
            transcript_output = gr.Text(label="Transcript")
            timestamp_output = gr.Text(label="Timestamps")
            foul_words = gr.Text(label="Foul Words")
            output_audio = gr.Audio(label="Output Audio", type="numpy")
    
    examples = gr.Examples(examples, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output,  foul_words, output_audio], fn=transcribe, examples_per_page=50,  cache_examples=False)

    submit_button.click(fn=transcribe, inputs=[audio_input, audio_language, task, timestamp_type], outputs=[transcript_output, timestamp_output, foul_words, output_audio])
    clear_button.add([audio_input, audio_language, task, timestamp_type, transcript_output, timestamp_output, foul_words, output_audio])


if __name__ == "__main__":
    demo.launch()