Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,18 @@
|
|
1 |
import torch
|
|
|
|
|
2 |
import gradio as gr
|
3 |
from model import (
|
4 |
UNet,
|
5 |
VQVAE,
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
)
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
import json
|
@@ -46,16 +55,148 @@ vae.eval()
|
|
46 |
print("Model and checkpoints loaded successfully!")
|
47 |
|
48 |
|
49 |
-
def
|
50 |
"""
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
This function returns a generator that yields an intermediate
|
55 |
-
decoded image at every timestep from the diffusion process.
|
56 |
"""
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
css_str = """
|
@@ -94,7 +235,7 @@ css_str = """
|
|
94 |
# )
|
95 |
|
96 |
demo = gr.Interface(
|
97 |
-
|
98 |
inputs=gr.Textbox(
|
99 |
label="Text Prompt",
|
100 |
lines=2,
|
|
|
1 |
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torchvision.utils import make_grid
|
4 |
import gradio as gr
|
5 |
from model import (
|
6 |
UNet,
|
7 |
VQVAE,
|
8 |
+
LinearNoiseScheduler,
|
9 |
+
get_tokenizer_and_model,
|
10 |
+
get_text_representation,
|
11 |
+
dataset_params,
|
12 |
+
diffusion_params,
|
13 |
+
ldm_params,
|
14 |
+
autoencoder_params,
|
15 |
+
train_params,
|
16 |
)
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
import json
|
|
|
55 |
print("Model and checkpoints loaded successfully!")
|
56 |
|
57 |
|
58 |
+
def sample_ddpm_inference(text_prompt):
|
59 |
"""
|
60 |
+
Given a text prompt and (optionally) an image condition (as a PIL image),
|
61 |
+
sample from the diffusion model and return a generated image (PIL image).
|
|
|
|
|
|
|
62 |
"""
|
63 |
+
mask_image_pil = None
|
64 |
+
guidance_scale = 1.0
|
65 |
+
|
66 |
+
# Create noise scheduler
|
67 |
+
scheduler = LinearNoiseScheduler(
|
68 |
+
num_timesteps=diffusion_params["num_timesteps"],
|
69 |
+
beta_start=diffusion_params["beta_start"],
|
70 |
+
beta_end=diffusion_params["beta_end"],
|
71 |
+
)
|
72 |
+
# Get conditioning config from ldm_params
|
73 |
+
condition_config = ldm_params.get("condition_config", None)
|
74 |
+
condition_types = (
|
75 |
+
condition_config.get("condition_types", [])
|
76 |
+
if condition_config is not None
|
77 |
+
else []
|
78 |
+
)
|
79 |
+
|
80 |
+
# Load text tokenizer/model for conditioning
|
81 |
+
text_model_type = condition_config["text_condition_config"]["text_embed_model"]
|
82 |
+
text_tokenizer, text_model = get_tokenizer_and_model(text_model_type, device=device)
|
83 |
+
|
84 |
+
# Get empty text representation for classifier-free guidance
|
85 |
+
empty_text_embed = get_text_representation([""], text_tokenizer, text_model, device)
|
86 |
+
|
87 |
+
# Get text representation of the input prompt
|
88 |
+
text_prompt_embed = get_text_representation(
|
89 |
+
[text_prompt], text_tokenizer, text_model, device
|
90 |
+
)
|
91 |
+
|
92 |
+
# Prepare image conditioning:
|
93 |
+
# If the user uploaded a mask image (should be a PIL image), convert it; otherwise, use zeros.
|
94 |
+
if "image" in condition_types:
|
95 |
+
if mask_image_pil is not None:
|
96 |
+
mask_transform = transforms.Compose(
|
97 |
+
[
|
98 |
+
transforms.Resize(
|
99 |
+
(
|
100 |
+
ldm_params["condition_config"]["image_condition_config"][
|
101 |
+
"image_condition_h"
|
102 |
+
],
|
103 |
+
ldm_params["condition_config"]["image_condition_config"][
|
104 |
+
"image_condition_w"
|
105 |
+
],
|
106 |
+
)
|
107 |
+
),
|
108 |
+
transforms.ToTensor(),
|
109 |
+
]
|
110 |
+
)
|
111 |
+
mask_tensor = (
|
112 |
+
mask_transform(mask_image_pil).unsqueeze(0).to(device)
|
113 |
+
) # (1, channels, H, W)
|
114 |
+
else:
|
115 |
+
# Create a zero mask with the required number of channels (e.g. 18)
|
116 |
+
ic = ldm_params["condition_config"]["image_condition_config"][
|
117 |
+
"image_condition_input_channels"
|
118 |
+
]
|
119 |
+
H = ldm_params["condition_config"]["image_condition_config"][
|
120 |
+
"image_condition_h"
|
121 |
+
]
|
122 |
+
W = ldm_params["condition_config"]["image_condition_config"][
|
123 |
+
"image_condition_w"
|
124 |
+
]
|
125 |
+
mask_tensor = torch.zeros((1, ic, H, W), device=device)
|
126 |
+
else:
|
127 |
+
mask_tensor = None
|
128 |
+
|
129 |
+
# Build conditioning dictionaries for classifier-free guidance:
|
130 |
+
# For unconditional, we use empty text and zero mask.
|
131 |
+
uncond_input = {}
|
132 |
+
cond_input = {}
|
133 |
+
if "text" in condition_types:
|
134 |
+
uncond_input["text"] = empty_text_embed
|
135 |
+
cond_input["text"] = text_prompt_embed
|
136 |
+
if "image" in condition_types:
|
137 |
+
# Use zeros for unconditioning, and the provided mask for conditioning.
|
138 |
+
uncond_input["image"] = torch.zeros_like(mask_tensor)
|
139 |
+
cond_input["image"] = mask_tensor
|
140 |
+
|
141 |
+
# Load the diffusion UNet (and assume it has been pretrained and saved)
|
142 |
+
# unet = UNet(
|
143 |
+
# image_channels=autoencoder_params["z_channels"], model_config=ldm_params
|
144 |
+
# ).to(device)
|
145 |
+
# ldm_checkpoint_path = os.path.join(
|
146 |
+
# train_params["task_name"], train_params["ldm_ckpt_name"]
|
147 |
+
# )
|
148 |
+
# if os.path.exists(ldm_checkpoint_path):
|
149 |
+
# checkpoint = torch.load(ldm_checkpoint_path, map_location=device)
|
150 |
+
# unet.load_state_dict(checkpoint["model_state_dict"])
|
151 |
+
# unet.eval()
|
152 |
+
|
153 |
+
# Load VQVAE (assume pretrained and saved)
|
154 |
+
# vae = VQVAE(
|
155 |
+
# image_channels=dataset_params["image_channels"], model_config=autoencoder_params
|
156 |
+
# ).to(device)
|
157 |
+
# vae_checkpoint_path = os.path.join(
|
158 |
+
# train_params["task_name"], train_params["vqvae_autoencoder_ckpt_name"]
|
159 |
+
# )
|
160 |
+
# if os.path.exists(vae_checkpoint_path):
|
161 |
+
# checkpoint = torch.load(vae_checkpoint_path, map_location=device)
|
162 |
+
# vae.load_state_dict(checkpoint["model_state_dict"])
|
163 |
+
# vae.eval()
|
164 |
+
|
165 |
+
# Determine latent shape from VQVAE: (batch, z_channels, H_lat, W_lat)
|
166 |
+
# For example, if image_size is 256 and there are 3 downsamplings, H_lat = 256 // 8 = 32.
|
167 |
+
latent_size = dataset_params["image_size"] // (
|
168 |
+
2 ** sum(autoencoder_params["down_sample"])
|
169 |
+
)
|
170 |
+
batch = train_params["num_samples"]
|
171 |
+
z_channels = autoencoder_params["z_channels"]
|
172 |
+
|
173 |
+
# Sample initial latent noise
|
174 |
+
xt = torch.randn((batch, z_channels, latent_size, latent_size), device=device)
|
175 |
+
|
176 |
+
# Sampling loop (reverse diffusion)
|
177 |
+
T = diffusion_params["num_timesteps"]
|
178 |
+
for i in reversed(range(T)):
|
179 |
+
t = torch.full((batch,), i, dtype=torch.long, device=device)
|
180 |
+
# Get conditional noise prediction
|
181 |
+
noise_pred_cond = unet(xt, t, cond_input)
|
182 |
+
if guidance_scale > 1:
|
183 |
+
noise_pred_uncond = unet(xt, t, uncond_input)
|
184 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
185 |
+
noise_pred_cond - noise_pred_uncond
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
noise_pred = noise_pred_cond
|
189 |
+
xt, _ = scheduler.sample_prev_timestep(xt, noise_pred, t)
|
190 |
+
|
191 |
+
with torch.no_grad():
|
192 |
+
generated = vae.decode(xt)
|
193 |
+
|
194 |
+
generated = torch.clamp(generated, -1, 1)
|
195 |
+
generated = (generated + 1) / 2 # scale to [0,1]
|
196 |
+
grid = make_grid(generated, nrow=1)
|
197 |
+
pil_img = transforms.ToPILImage()(grid.cpu())
|
198 |
+
|
199 |
+
yield pil_img
|
200 |
|
201 |
|
202 |
css_str = """
|
|
|
235 |
# )
|
236 |
|
237 |
demo = gr.Interface(
|
238 |
+
sample_ddpm_inference,
|
239 |
inputs=gr.Textbox(
|
240 |
label="Text Prompt",
|
241 |
lines=2,
|