import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import tqdm # Define transformations transform = transforms.Compose([ transforms.Resize((224, 224)), # Resize images for ResNet transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) # Load CIFAR-10 Dataset trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False) # Define Model (ResNet-18) model = torchvision.models.resnet18(pretrained=True) model.fc = nn.Linear(model.fc.in_features, 10) # Adjust for 10 CIFAR-10 classes # Define Loss and Optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Train the Model num_epochs = 5 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) for epoch in range(num_epochs): model.train() running_loss = 0.0 for images, labels in tqdm.tqdm(trainloader): images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(trainloader)}") # Save the Trained Model torch.save(model.state_dict(), "model.pth") print("Model training complete and saved as model.pth!")