Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as transforms | |
import torchvision.models as models | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import pandas as pd | |
import random | |
from PIL import Image | |
from torchvision import datasets | |
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix | |
# CIFAR-10 Class Names | |
CLASS_NAMES = [ | |
"Airplane", "Automobile", "Bird", "Cat", "Deer", | |
"Dog", "Frog", "Horse", "Ship", "Truck" | |
] | |
# Load CIFAR-10 Dataset for Visualization | |
transform = transforms.Compose([transforms.ToTensor()]) | |
dataset = datasets.CIFAR10(root="./data", train=True, download=True, transform=transform) | |
# Load Trained Model | |
def load_model(): | |
model = models.resnet18(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, len(CLASS_NAMES)) | |
model.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
model = load_model() | |
# Sidebar Navigation | |
st.sidebar.title("Navigation") | |
page = st.sidebar.radio("Go to", ["Dataset", "Visualizations", "Model Metrics", "Predictor"]) | |
# π Dataset Preview Page | |
if page == "Dataset": | |
st.title("π CIFAR-10 Dataset Preview") | |
# Dataset Information | |
st.markdown(""" | |
## π About CIFAR-10 | |
The **CIFAR-10 dataset** is widely used in image classification research. | |
- π **Created by**: Alex Krizhevsky, Vinod Nair, Geoffrey Hinton | |
- π **From**: University of Toronto | |
- πΈ **Images**: 60,000 color images (**32Γ32 pixels**) | |
- π· **Classes (10)**: | |
- π« Airplane | |
- π Automobile | |
- π¦ Bird | |
- π± Cat | |
- π¦ Deer | |
- πΆ Dog | |
- πΈ Frog | |
- π΄ Horse | |
- π’ Ship | |
- π Truck | |
- π **[Dataset Link](https://www.cs.toronto.edu/~kriz/cifar.html)** | |
""") | |
# Show 10 Random Images | |
st.subheader("π Random CIFAR-10 Images") | |
cols = st.columns(5) # Display in 5 columns | |
for i in range(10): | |
index = random.randint(0, len(dataset) - 1) | |
image, label = dataset[index] | |
image = transforms.ToPILImage()(image) # Convert tensor to image | |
cols[i % 5].image(image, caption=CLASS_NAMES[label], use_container_width=True) | |
# π Visualization Page | |
elif page == "Visualizations": | |
st.title("π Dataset Visualizations") | |
# Count class occurrences | |
class_counts = {cls: 0 for cls in CLASS_NAMES} | |
for _, label in dataset: | |
class_counts[CLASS_NAMES[label]] += 1 | |
# Pie Chart | |
st.subheader("π Class Distribution (Pie Chart)") | |
fig, ax = plt.subplots() | |
colors = sns.color_palette("husl", len(CLASS_NAMES)) | |
ax.pie(class_counts.values(), labels=class_counts.keys(), autopct='%1.1f%%', colors=colors) | |
st.pyplot(fig) | |
# Bar Chart | |
st.subheader("π Class Distribution (Bar Chart)") | |
fig, ax = plt.subplots() | |
sns.barplot(x=list(class_counts.keys()), y=list(class_counts.values()), palette="husl") | |
plt.xticks(rotation=45) | |
st.pyplot(fig) | |
# π Model Metrics Page | |
elif page == "Model Metrics": | |
st.title("π Model Performance") | |
try: | |
y_true = torch.load("y_true.pth") | |
y_pred = torch.load("y_pred.pth") | |
# Display Accuracy | |
st.write(f"### β Accuracy: **{accuracy_score(y_true, y_pred):.2f}**") | |
# Classification Report | |
report = classification_report(y_true, y_pred, target_names=CLASS_NAMES, output_dict=True) | |
st.write(pd.DataFrame(report).T) | |
# Confusion Matrix | |
st.subheader("π Confusion Matrix") | |
cm = confusion_matrix(y_true, y_pred) | |
fig, ax = plt.subplots(figsize=(8, 6)) | |
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=CLASS_NAMES, yticklabels=CLASS_NAMES) | |
st.pyplot(fig) | |
except: | |
st.error("π¨ Model metrics files not found!") | |
# π Prediction Page | |
elif page == "Predictor": | |
st.title("π CIFAR-10 Image Classifier") | |
# About the Classifier | |
st.markdown(""" | |
## π About This App | |
This app is a **deep learning image classifier** trained on the **CIFAR-10 dataset**. | |
It can recognize **10 different objects/animals**: | |
- π« Airplane, π Automobile, π¦ Bird, π± Cat, π¦ Deer | |
- πΆ Dog, πΈ Frog, π΄ Horse, π’ Ship, π Truck | |
""") | |
# Upload Image | |
uploaded_file = st.file_uploader("π€ Upload an image", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption="πΌ Uploaded Image", use_container_width=True) | |
# Transform image for model | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
image_tensor = transform(image).unsqueeze(0) | |
# Make prediction | |
with torch.no_grad(): | |
output = model(image_tensor) | |
predicted_class = torch.argmax(output, dim=1).item() | |
# Display Prediction | |
st.success(f"### β Prediction: **{CLASS_NAMES[predicted_class]}**") | |