import streamlit as st import pandas as pd import numpy as np import re import string import joblib import matplotlib.pyplot as plt import seaborn as sns from wordcloud import WordCloud import nltk from nltk.corpus import stopwords from sklearn.metrics import silhouette_score # Download stopwords if not available nltk.download("stopwords") # Load models and vectorizer kmeans = joblib.load("kmeans_fake_news.pkl") lda = joblib.load("lda_fake_news.pkl") vectorizer = joblib.load("tfidf_vectorizer.pkl") # Load dataset DATASET_URL = "https://www.kaggle.com/datasets/mrisdal/fake-news" fake_df = pd.read_csv("Fake.csv") # Preprocessing stop_words = set(stopwords.words("english")) def clean_text(text): """Cleans the input text by removing punctuation, numbers, and stopwords.""" text = text.lower() text = re.sub(f"[{string.punctuation}]", "", text) # Remove punctuation text = re.sub(r"\d+", "", text) # Remove numbers text = " ".join([word for word in text.split() if word not in stop_words]) # Remove stopwords return text fake_df = fake_df[['title', 'text']].dropna() fake_df['content'] = fake_df['title'] + " " + fake_df['text'] fake_df['clean_text'] = fake_df['content'].apply(clean_text) # Transform text into TF-IDF features X = vectorizer.transform(fake_df['clean_text']) fake_df['cluster'] = kmeans.predict(X) # Get top words for LDA topics words = np.array(vectorizer.get_feature_names_out()) top_words = [" ".join(words[np.argsort(topic)][-10:]) for topic in lda.components_] # Sidebar Navigation st.sidebar.title("Navigation") page = st.sidebar.radio("Go to", ["Dataset", "Visualizations", "Model Info", "Model Metrics", "Predictor"]) # Model Information Page if page == "Model Info": st.title("Model Information") st.write("### Machine Learning Models Used") st.markdown( """ - **K-Means Clustering**: Used to group fake news articles into clusters based on their content similarity. - **Latent Dirichlet Allocation (LDA)**: Used for topic modeling to extract the main topics from fake news articles. - **TF-IDF Vectorizer**: Transforms the textual content into numerical features to be used by the models. """ ) # Dataset Page elif page == "Dataset": st.title("Fake News Topic Analyzer") st.write("### About the Dataset") st.markdown( """ The dataset contains **fake news articles** collected from multiple sources. It includes titles, article texts, and publishing dates. We use this dataset for **unsupervised clustering and topic modeling**. """ ) st.write(f"📂 **Dataset Source:** [Kaggle: Fake News](<{DATASET_URL}>)") st.write("### Sample Data (Raw)") st.dataframe(fake_df[['title', 'text']].head()) st.write("### Sample Data (Cleaned)") st.dataframe(fake_df[['clean_text']].head()) st.write("### Word Cloud of Most Frequent Words") wordcloud = WordCloud(width=800, height=400, background_color="white").generate(" ".join(fake_df['clean_text'])) fig, ax = plt.subplots() ax.imshow(wordcloud, interpolation="bilinear") ax.axis("off") st.pyplot(fig) # Visualizations Page elif page == "Visualizations": st.title("Fake News Clustering & Topic Modeling") st.write("### Cluster Distribution") fig, ax = plt.subplots() sns.countplot(x=fake_df['cluster'], ax=ax, palette="viridis") ax.set_xlabel("Cluster") ax.set_ylabel("Number of Articles") st.pyplot(fig) st.write("### Topic Words from LDA") for idx, words in enumerate(top_words): st.write(f"**Topic {idx}:** {words}") # Model Metrics Page elif page == "Model Metrics": st.title("Model Clustering Performance") sil_score = silhouette_score(X, fake_df['cluster']) st.write(f"### Silhouette Score (K-Means Clustering): **{sil_score:.4f}**") st.write("### Sample Articles per Cluster") for cluster_id in sorted(fake_df['cluster'].unique()): st.write(f"#### Cluster {cluster_id} Samples") st.dataframe(fake_df[fake_df['cluster'] == cluster_id][['title', 'text']].head(3)) # Predictor Page elif page == "Predictor": st.title("Fake News Topic Analyzer") user_input = st.text_area("Enter news content:") if st.button("Analyze"): if user_input.strip(): cleaned_input = clean_text(user_input) vectorized_input = vectorizer.transform([cleaned_input]) cluster_pred = kmeans.predict(vectorized_input)[0] topic_pred = np.argmax(lda.transform(vectorized_input)) st.write(f"### Predicted Cluster: {cluster_pred}") # Handle out-of-range topic index if topic_pred < len(top_words): st.write(f"### Predicted Topic: {topic_pred} - {top_words[topic_pred]}") else: st.write(f"### Predicted Topic: {topic_pred} (No keywords available)")