RuadaptQwen2.5 / app.py
RefalMachine's picture
Update app.py
97f173f verified
raw
history blame
5.5 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
import requests
from openai import OpenAI, AsyncOpenAI
clients = {}
token = os.getenv('API_KEY')
#try:
clients['32B-Pro (beta)'] = [
OpenAI(api_key=token, base_url=os.getenv('RUADAPT_PRO_PATH')),
requests.get(os.getenv('RUADAPT_PRO_PATH') + '/models', headers={"Authorization": f"Bearer {token}"}).json()['data'][0]['id']
]
clients['14B-R1 (preview)'] = [
OpenAI(api_key=token, base_url=os.getenv('RUADAPT_QWEN_14_R1_PATH')),
requests.get(os.getenv('RUADAPT_QWEN_14_R1_PATH') + '/models', headers={"Authorization": f"Bearer {token}"}).json()['data'][0]['id']
]
#clients['7B-Lite (beta)'] = [
# OpenAI(api_key=token, base_url=os.getenv('RUADAPT_LITE_PATH')),
# requests.get(os.getenv('RUADAPT_LITE_PATH') + '/models', headers={"Authorization": f"Bearer {token}"}).json()['data'][0]['id']
#]
#except:
# pass
try:
clients['32B QWQ (experimental, without any additional tuning after LEP!)'] = [
OpenAI(api_key=token,
base_url=os.getenv('MODEL_NAME_OR_PATH_QWQ')),
requests.get(os.getenv('MODEL_NAME_OR_PATH_QWQ') + '/models', headers={"Authorization": f"Bearer {token}"}).json()['data'][0]['id']]
except:
pass
try:
clients['7B (work in progress)'] = [OpenAI(api_key=os.getenv('API_KEY'), base_url=os.getenv('MODEL_NAME_OR_PATH_7B')), requests.get(os.getenv('MODEL_NAME_OR_PATH_7B') + '/models').json()['data'][0]['id']]
except:
pass
try:
clients['3B'] = [OpenAI(api_key=os.getenv('API_KEY'), base_url=os.getenv('MODEL_NAME_OR_PATH_3B')), requests.get(os.getenv('MODEL_NAME_OR_PATH_3B') + '/models').json()['data'][0]['id']]
except:
pass
def respond(
message,
history: list[tuple[str, str]],
model_name,
system_message,
max_tokens,
temperature,
top_p,
repetition_penalty
):
messages = []
if len(system_message.strip()) > 0:
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
res = clients[model_name][0].chat.completions.create(
model=clients[model_name][1],
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True,
extra_body={
"repetition_penalty": repetition_penalty,
"add_generation_prompt": True,
}
)
#print(res)
for message in res:
#print(message)
token = message.choices[0].delta.content
print(type(token))
response += token
print(response)
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
options = ["32B-Pro (beta)", '14B-R1 (preview)', "32B QWQ (experimental, without any additional tuning after LEP!)", "7B (work in progress)", "3B"]
options = options[:2]
system_old = "You are a helpful and harmless assistant. You should think step-by-step. First, reason (the user does not see your reasoning), then give your final answer."
system_new = "Ты Руадапт - полезный и дружелюбный интеллектуальный ассистент для помощи пользователям в их вопросах."
system_new2 = "Ты — Руадапт, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
latex_delimiters = [{
"left": "\\(",
"right": "\\)",
"display": True
}, {
"left": "\\begin\{equation\}",
"right": "\\end\{equation\}",
"display": True
}, {
"left": "\\begin\{align\}",
"right": "\\end\{align\}",
"display": True
}, {
"left": "\\begin\{alignat\}",
"right": "\\end\{alignat\}",
"display": True
}, {
"left": "\\begin\{gather\}",
"right": "\\end\{gather\}",
"display": True
}, {
"left": "\\begin\{CD\}",
"right": "\\end\{CD\}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}, {"left": "$$", "right": "$$", "display": True}]
chatbot = gr.Chatbot(label="Chatbot",
scale=1,
height=400,
latex_delimiters=latex_delimiters)
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Radio(choices=options, label="Model:", value=options[0]),
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096*2, value=4096, step=2, label="Max new tokens"),
gr.Slider(minimum=0.0, maximum=2.0, value=0.0, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Slider(minimum=0.9, maximum=1.5, value=1.05, step=0.05, label="repetition_penalty"),
],
chatbot=chatbot,
concurrency_limit=10
)
if __name__ == "__main__":
#print(requests.get(os.getenv('MODEL_NAME_OR_PATH')[:-3] + '/docs'))
demo.launch(share=True)