from PIL import Image import numpy as np import matplotlib.cm as cm import msgspec import torch from torchvision.transforms import transforms from torchvision.transforms import InterpolationMode import torchvision.transforms.functional as TF import timm from timm.models import VisionTransformer import safetensors.torch import gradio as gr import spaces from huggingface_hub import hf_hub_download class Fit(torch.nn.Module): def __init__( self, bounds: tuple[int, int] | int, interpolation = InterpolationMode.LANCZOS, grow: bool = True, pad: float | None = None ): super().__init__() self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds self.interpolation = interpolation self.grow = grow self.pad = pad def forward(self, img: Image) -> Image: wimg, himg = img.size hbound, wbound = self.bounds hscale = hbound / himg wscale = wbound / wimg if not self.grow: hscale = min(hscale, 1.0) wscale = min(wscale, 1.0) scale = min(hscale, wscale) if scale == 1.0: return img hnew = min(round(himg * scale), hbound) wnew = min(round(wimg * scale), wbound) img = TF.resize(img, (hnew, wnew), self.interpolation) if self.pad is None: return img hpad = hbound - hnew wpad = wbound - wnew tpad = hpad // 2 bpad = hpad - tpad lpad = wpad // 2 rpad = wpad - lpad return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"bounds={self.bounds}, " + f"interpolation={self.interpolation.value}, " + f"grow={self.grow}, " + f"pad={self.pad})" ) class CompositeAlpha(torch.nn.Module): def __init__( self, background: tuple[float, float, float] | float, ): super().__init__() self.background = (background, background, background) if isinstance(background, float) else background self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) def forward(self, img: torch.Tensor) -> torch.Tensor: if img.shape[-3] == 3: return img alpha = img[..., 3, None, :, :] img[..., :3, :, :] *= alpha background = self.background.expand(-1, img.shape[-2], img.shape[-1]) if background.ndim == 1: background = background[:, None, None] elif background.ndim == 2: background = background[None, :, :] img[..., :3, :, :] += (1.0 - alpha) * background return img[..., :3, :, :] def __repr__(self) -> str: return ( f"{self.__class__.__name__}(" + f"background={self.background})" ) transform = transforms.Compose([ Fit((384, 384)), transforms.ToTensor(), CompositeAlpha(0.5), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), transforms.CenterCrop((384, 384)), ]) model = timm.create_model( "vit_so400m_patch14_siglip_384.webli", pretrained=False, num_classes=9083, ) # type: VisionTransformer class GatedHead(torch.nn.Module): def __init__(self, num_features: int, num_classes: int ): super().__init__() self.num_classes = num_classes self.linear = torch.nn.Linear(num_features, num_classes * 2) self.act = torch.nn.Sigmoid() self.gate = torch.nn.Sigmoid() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.linear(x) x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:]) return x model.head = GatedHead(min(model.head.weight.shape), 9083) cached_model = hf_hub_download( repo_id="RedRocket/JointTaggerProject", subfolder="JTP_PILOT2", filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors" ) safetensors.torch.load_model(model, cached_model) model.eval() with open("tagger_tags.json", "rb") as file: tags = msgspec.json.decode(file.read(), type=dict[str, int]) for tag in list(tags.keys()): tags[tag.replace("_", " ")] = tags.pop(tag) allowed_tags = list(tags.keys()) @spaces.GPU(duration=5) def run_classifier(image: Image.Image, threshold): img = image.convert('RGBA') tensor = transform(img).unsqueeze(0) with torch.no_grad(): probits = model(tensor)[0] # type: torch.Tensor values, indices = probits.cpu().topk(250) tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)} sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score def create_tags(threshold, sorted_tag_score: dict): filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} text_no_impl = ", ".join(filtered_tag_score.keys()) return text_no_impl, filtered_tag_score def clear_image(): return "", {}, None, {}, None @spaces.GPU(duration=5) def cam_inference(img, threshold, alpha, evt: gr.SelectData): target_tag_index = tags[evt.value] tensor = transform(img).unsqueeze(0) gradients = {} activations = {} def hook_forward(module, input, output): activations['value'] = output def hook_backward(module, grad_in, grad_out): gradients['value'] = grad_out[0] handle_forward = model.norm.register_forward_hook(hook_forward) handle_backward = model.norm.register_full_backward_hook(hook_backward) probits = model(tensor)[0] model.zero_grad() probits[target_tag_index].backward(retain_graph=True) with torch.no_grad(): patch_grads = gradients.get('value') patch_acts = activations.get('value') weights = torch.mean(patch_grads, dim=1).squeeze(0) cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights) cam_1d = torch.relu(cam_1d) cam = cam_1d.reshape(27, 27).detach().cpu().numpy() handle_forward.remove() handle_backward.remove() return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2): """ Overlays CAM on image and returns a PIL image. Args: image_pil: PIL Image (RGB) cam: 2D numpy array (activation map) alpha: float, blending factor vis_threshold: float, minimum normalized CAM value to show color Returns: PIL.Image.Image with overlay """ if cam is None: return image_pil w, h = image_pil.size size = max(w, h) # Normalize CAM to [0, 1] cam -= cam.min() cam /= cam.max() # Create heatmap using matplotlib colormap colormap = cm.get_cmap('inferno') cam_rgb = colormap(cam)[:, :, :3] # RGB # Create alpha channel cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha # Alpha mask cam_rgba = np.dstack((cam_rgb, cam_alpha)) # Shape: (H, W, 4) # Coarse upscale for CAM output -- keeps "blocky" effect that is truer to what is measured cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA") cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST) # Model uses padded image as input, this matches attention map to input image aspect ratio cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC) cam_pil = transforms.CenterCrop((h, w))(cam_pil) # Composite over original composite = Image.alpha_composite(image_pil, cam_pil) return composite custom_css = """ .output-class { display: none; } .inferno-slider input[type=range] { background: linear-gradient(to right, #000004, #1b0c41, #4a0c6b, #781c6d, #a52c60, #cf4446, #ed6925, #fb9b06, #f7d13d, #fcffa4 ) !important; background-size: 100% 100% !important; } #image_container-image { width: 100%; aspect-ratio: 1 / 1; max-height: 100%; } #image_container img { object-fit: contain !important; } """ with gr.Blocks(css=custom_css) as demo: gr.Markdown("## Joint Tagger Project: JTP-PILOT² Demo **BETA**") original_image_state = gr.State() # stash a copy of the input image sorted_tag_score_state = gr.State(value={}) # stash a copy of the input image cam_state = gr.State() with gr.Row(): with gr.Column(): image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container") cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider") alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha") with gr.Column(): threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold") tag_string = gr.Textbox(label="Tag String") label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) gr.Markdown(""" This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs. Thanks to metal63 for providing initial code for attention visualization (click a tag in the tag list to try it out!) Special thanks to Minotoro at frosting.ai for providing the compute power for this project. """) image.upload( fn=run_classifier, inputs=[image, threshold_slider], outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state], show_progress='minimal' ) image.clear( fn=clear_image, inputs=[], outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state] ) threshold_slider.input( fn=create_tags, inputs=[threshold_slider, sorted_tag_score_state], outputs=[tag_string, label_box], show_progress='hidden' ) label_box.select( fn=cam_inference, inputs=[original_image_state, cam_slider, alpha_slider], outputs=[image, cam_state], show_progress='minimal' ) cam_slider.input( fn=create_cam_visualization_pil, inputs=[original_image_state, cam_state, alpha_slider, cam_slider], outputs=[image], show_progress='hidden' ) alpha_slider.input( fn=create_cam_visualization_pil, inputs=[original_image_state, cam_state, alpha_slider, cam_slider], outputs=[image], show_progress='hidden' ) if __name__ == "__main__": demo.launch()