|
from PIL import Image |
|
import numpy as np |
|
import matplotlib.cm as cm |
|
import msgspec |
|
import torch |
|
from torchvision.transforms import transforms |
|
from torchvision.transforms import InterpolationMode |
|
import torchvision.transforms.functional as TF |
|
import timm |
|
from timm.models import VisionTransformer |
|
import safetensors.torch |
|
import gradio as gr |
|
import spaces |
|
from huggingface_hub import hf_hub_download |
|
|
|
class Fit(torch.nn.Module): |
|
def __init__( |
|
self, |
|
bounds: tuple[int, int] | int, |
|
interpolation = InterpolationMode.LANCZOS, |
|
grow: bool = True, |
|
pad: float | None = None |
|
): |
|
super().__init__() |
|
|
|
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds |
|
self.interpolation = interpolation |
|
self.grow = grow |
|
self.pad = pad |
|
|
|
def forward(self, img: Image) -> Image: |
|
wimg, himg = img.size |
|
hbound, wbound = self.bounds |
|
|
|
hscale = hbound / himg |
|
wscale = wbound / wimg |
|
|
|
if not self.grow: |
|
hscale = min(hscale, 1.0) |
|
wscale = min(wscale, 1.0) |
|
|
|
scale = min(hscale, wscale) |
|
if scale == 1.0: |
|
return img |
|
|
|
hnew = min(round(himg * scale), hbound) |
|
wnew = min(round(wimg * scale), wbound) |
|
|
|
img = TF.resize(img, (hnew, wnew), self.interpolation) |
|
|
|
if self.pad is None: |
|
return img |
|
|
|
hpad = hbound - hnew |
|
wpad = wbound - wnew |
|
|
|
tpad = hpad // 2 |
|
bpad = hpad - tpad |
|
|
|
lpad = wpad // 2 |
|
rpad = wpad - lpad |
|
|
|
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad) |
|
|
|
def __repr__(self) -> str: |
|
return ( |
|
f"{self.__class__.__name__}(" + |
|
f"bounds={self.bounds}, " + |
|
f"interpolation={self.interpolation.value}, " + |
|
f"grow={self.grow}, " + |
|
f"pad={self.pad})" |
|
) |
|
|
|
class CompositeAlpha(torch.nn.Module): |
|
def __init__( |
|
self, |
|
background: tuple[float, float, float] | float, |
|
): |
|
super().__init__() |
|
|
|
self.background = (background, background, background) if isinstance(background, float) else background |
|
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2) |
|
|
|
def forward(self, img: torch.Tensor) -> torch.Tensor: |
|
if img.shape[-3] == 3: |
|
return img |
|
|
|
alpha = img[..., 3, None, :, :] |
|
|
|
img[..., :3, :, :] *= alpha |
|
|
|
background = self.background.expand(-1, img.shape[-2], img.shape[-1]) |
|
if background.ndim == 1: |
|
background = background[:, None, None] |
|
elif background.ndim == 2: |
|
background = background[None, :, :] |
|
|
|
img[..., :3, :, :] += (1.0 - alpha) * background |
|
return img[..., :3, :, :] |
|
|
|
def __repr__(self) -> str: |
|
return ( |
|
f"{self.__class__.__name__}(" + |
|
f"background={self.background})" |
|
) |
|
|
|
transform = transforms.Compose([ |
|
Fit((384, 384)), |
|
transforms.ToTensor(), |
|
CompositeAlpha(0.5), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), |
|
transforms.CenterCrop((384, 384)), |
|
]) |
|
|
|
model = timm.create_model( |
|
"vit_so400m_patch14_siglip_384.webli", |
|
pretrained=False, |
|
num_classes=9083, |
|
) |
|
|
|
class GatedHead(torch.nn.Module): |
|
def __init__(self, |
|
num_features: int, |
|
num_classes: int |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.linear = torch.nn.Linear(num_features, num_classes * 2) |
|
|
|
self.act = torch.nn.Sigmoid() |
|
self.gate = torch.nn.Sigmoid() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.linear(x) |
|
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:]) |
|
return x |
|
|
|
model.head = GatedHead(min(model.head.weight.shape), 9083) |
|
|
|
cached_model = hf_hub_download( |
|
repo_id="RedRocket/JointTaggerProject", |
|
subfolder="JTP_PILOT2", |
|
filename="JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors" |
|
) |
|
|
|
safetensors.torch.load_model(model, cached_model) |
|
model.eval() |
|
|
|
with open("tagger_tags.json", "rb") as file: |
|
tags = msgspec.json.decode(file.read(), type=dict[str, int]) |
|
|
|
for tag in list(tags.keys()): |
|
tags[tag.replace("_", " ")] = tags.pop(tag) |
|
|
|
allowed_tags = list(tags.keys()) |
|
|
|
@spaces.GPU(duration=5) |
|
def run_classifier(image: Image.Image, threshold): |
|
img = image.convert('RGBA') |
|
tensor = transform(img).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
probits = model(tensor)[0] |
|
values, indices = probits.cpu().topk(250) |
|
|
|
tag_score = {allowed_tags[idx.item()]: val.item() for idx, val in zip(indices, values)} |
|
|
|
sorted_tag_score = dict(sorted(tag_score.items(), key=lambda item: item[1], reverse=True)) |
|
|
|
return *create_tags(threshold, sorted_tag_score), img, sorted_tag_score |
|
|
|
def create_tags(threshold, sorted_tag_score: dict): |
|
filtered_tag_score = {key: value for key, value in sorted_tag_score.items() if value > threshold} |
|
text_no_impl = ", ".join(filtered_tag_score.keys()) |
|
return text_no_impl, filtered_tag_score |
|
|
|
def clear_image(): |
|
return "", {}, None, {}, None |
|
|
|
@spaces.GPU(duration=5) |
|
def cam_inference(img, threshold, alpha, evt: gr.SelectData): |
|
target_tag_index = tags[evt.value] |
|
tensor = transform(img).unsqueeze(0) |
|
|
|
gradients = {} |
|
activations = {} |
|
|
|
def hook_forward(module, input, output): |
|
activations['value'] = output |
|
|
|
def hook_backward(module, grad_in, grad_out): |
|
gradients['value'] = grad_out[0] |
|
|
|
handle_forward = model.norm.register_forward_hook(hook_forward) |
|
handle_backward = model.norm.register_full_backward_hook(hook_backward) |
|
|
|
probits = model(tensor)[0] |
|
|
|
model.zero_grad() |
|
probits[target_tag_index].backward(retain_graph=True) |
|
|
|
with torch.no_grad(): |
|
patch_grads = gradients.get('value') |
|
patch_acts = activations.get('value') |
|
|
|
weights = torch.mean(patch_grads, dim=1).squeeze(0) |
|
|
|
cam_1d = torch.einsum('pe,e->p', patch_acts.squeeze(0), weights) |
|
cam_1d = torch.relu(cam_1d) |
|
|
|
cam = cam_1d.reshape(27, 27).detach().cpu().numpy() |
|
|
|
handle_forward.remove() |
|
handle_backward.remove() |
|
|
|
return create_cam_visualization_pil(img, cam, alpha=alpha, vis_threshold=threshold), cam |
|
|
|
def create_cam_visualization_pil(image_pil, cam, alpha=0.6, vis_threshold=0.2): |
|
""" |
|
Overlays CAM on image and returns a PIL image. |
|
Args: |
|
image_pil: PIL Image (RGB) |
|
cam: 2D numpy array (activation map) |
|
alpha: float, blending factor |
|
vis_threshold: float, minimum normalized CAM value to show color |
|
Returns: |
|
PIL.Image.Image with overlay |
|
""" |
|
if cam is None: |
|
return image_pil |
|
w, h = image_pil.size |
|
size = max(w, h) |
|
|
|
|
|
cam -= cam.min() |
|
cam /= cam.max() |
|
|
|
|
|
colormap = cm.get_cmap('inferno') |
|
cam_rgb = colormap(cam)[:, :, :3] |
|
|
|
|
|
cam_alpha = (cam >= vis_threshold).astype(np.float32) * alpha |
|
cam_rgba = np.dstack((cam_rgb, cam_alpha)) |
|
|
|
|
|
cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8), mode="RGBA") |
|
cam_pil = cam_pil.resize((216,216), resample=Image.Resampling.NEAREST) |
|
|
|
|
|
cam_pil = cam_pil.resize((size, size), resample=Image.Resampling.BICUBIC) |
|
cam_pil = transforms.CenterCrop((h, w))(cam_pil) |
|
|
|
|
|
composite = Image.alpha_composite(image_pil, cam_pil) |
|
|
|
return composite |
|
|
|
custom_css = """ |
|
.output-class { display: none; } |
|
.inferno-slider input[type=range] { |
|
background: linear-gradient(to right, |
|
#000004, #1b0c41, #4a0c6b, #781c6d, |
|
#a52c60, #cf4446, #ed6925, #fb9b06, |
|
#f7d13d, #fcffa4 |
|
) !important; |
|
background-size: 100% 100% !important; |
|
} |
|
#image_container-image { |
|
width: 100%; |
|
aspect-ratio: 1 / 1; |
|
max-height: 100%; |
|
} |
|
#image_container img { |
|
object-fit: contain !important; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.Markdown("## Joint Tagger Project: JTP-PILOT² Demo **BETA**") |
|
original_image_state = gr.State() |
|
sorted_tag_score_state = gr.State(value={}) |
|
cam_state = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(label="Source", sources=['upload', 'clipboard'], type='pil', show_label=False, elem_id="image_container") |
|
cam_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.40, label="CAM Threshold", elem_classes="inferno-slider") |
|
alpha_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.60, label="CAM Alpha") |
|
with gr.Column(): |
|
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.20, label="Tag Threshold") |
|
tag_string = gr.Textbox(label="Tag String") |
|
label_box = gr.Label(label="Tag Predictions", num_top_classes=250, show_label=False) |
|
|
|
gr.Markdown(""" |
|
This tagger is designed for use on furry images (though may very well work on out-of-distribution images, potentially with funny results). A threshold of 0.2 is recommended. Lower thresholds often turn up more valid tags, but can also result in some amount of hallucinated tags. |
|
This tagger is the result of joint efforts between members of the RedRocket team, with distinctions given to Thessalo for creating the foundation for this project with his efforts, RedHotTensors for redesigning the process into a second-order method that models information expectation, and drhead for dataset prep, creation of training code and supervision of training runs. |
|
Thanks to metal63 for providing initial code for attention visualization (click a tag in the tag list to try it out!) |
|
Special thanks to Minotoro at frosting.ai for providing the compute power for this project. |
|
""") |
|
|
|
image.upload( |
|
fn=run_classifier, |
|
inputs=[image, threshold_slider], |
|
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state], |
|
show_progress='minimal' |
|
) |
|
|
|
image.clear( |
|
fn=clear_image, |
|
inputs=[], |
|
outputs=[tag_string, label_box, original_image_state, sorted_tag_score_state, cam_state] |
|
) |
|
|
|
threshold_slider.input( |
|
fn=create_tags, |
|
inputs=[threshold_slider, sorted_tag_score_state], |
|
outputs=[tag_string, label_box], |
|
show_progress='hidden' |
|
) |
|
|
|
label_box.select( |
|
fn=cam_inference, |
|
inputs=[original_image_state, cam_slider, alpha_slider], |
|
outputs=[image, cam_state], |
|
show_progress='minimal' |
|
) |
|
|
|
cam_slider.input( |
|
fn=create_cam_visualization_pil, |
|
inputs=[original_image_state, cam_state, alpha_slider, cam_slider], |
|
outputs=[image], |
|
show_progress='hidden' |
|
) |
|
|
|
alpha_slider.input( |
|
fn=create_cam_visualization_pil, |
|
inputs=[original_image_state, cam_state, alpha_slider, cam_slider], |
|
outputs=[image], |
|
show_progress='hidden' |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |