Recompense commited on
Commit
a3540f6
·
verified ·
1 Parent(s): 73c2051

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +467 -444
app.py CHANGED
@@ -1,522 +1,545 @@
 
1
  import streamlit as st
2
  from streamlit.runtime.uploaded_file_manager import UploadedFile
3
  import tensorflow as tf
4
  import pandas as pd
 
5
 
6
  # 🔹 Expand the Page Layout
7
- st.set_page_config(layout="wide") # Forces full-width mode
8
 
 
9
  current_model = "Model Mini"
10
-
11
- class_names = ['apple_pie',
12
- 'baby_back_ribs',
13
- 'baklava',
14
- 'beef_carpaccio',
15
- 'beef_tartare',
16
- 'beet_salad',
17
- 'beignets',
18
- 'bibimbap',
19
- 'bread_pudding',
20
- 'breakfast_burrito',
21
- 'bruschetta',
22
- 'caesar_salad',
23
- 'cannoli',
24
- 'caprese_salad',
25
- 'carrot_cake',
26
- 'ceviche',
27
- 'cheese_plate',
28
- 'cheesecake',
29
- 'chicken_curry',
30
- 'chicken_quesadilla',
31
- 'chicken_wings',
32
- 'chocolate_cake',
33
- 'chocolate_mousse',
34
- 'churros',
35
- 'clam_chowder',
36
- 'club_sandwich',
37
- 'crab_cakes',
38
- 'creme_brulee',
39
- 'croque_madame',
40
- 'cup_cakes',
41
- 'deviled_eggs',
42
- 'donuts',
43
- 'dumplings',
44
- 'edamame',
45
- 'eggs_benedict',
46
- 'escargots',
47
- 'falafel',
48
- 'filet_mignon',
49
- 'fish_and_chips',
50
- 'foie_gras',
51
- 'french_fries',
52
- 'french_onion_soup',
53
- 'french_toast',
54
- 'fried_calamari',
55
- 'fried_rice',
56
- 'frozen_yogurt',
57
- 'garlic_bread',
58
- 'gnocchi',
59
- 'greek_salad',
60
- 'grilled_cheese_sandwich',
61
- 'grilled_salmon',
62
- 'guacamole',
63
- 'gyoza',
64
- 'hamburger',
65
- 'hot_and_sour_soup',
66
- 'hot_dog',
67
- 'huevos_rancheros',
68
- 'hummus',
69
- 'ice_cream',
70
- 'lasagna',
71
- 'lobster_bisque',
72
- 'lobster_roll_sandwich',
73
- 'macaroni_and_cheese',
74
- 'macarons',
75
- 'miso_soup',
76
- 'mussels',
77
- 'nachos',
78
- 'omelette',
79
- 'onion_rings',
80
- 'oysters',
81
- 'pad_thai',
82
- 'paella',
83
- 'pancakes',
84
- 'panna_cotta',
85
- 'peking_duck',
86
- 'pho',
87
- 'pizza',
88
- 'pork_chop',
89
- 'poutine',
90
- 'prime_rib',
91
- 'pulled_pork_sandwich',
92
- 'ramen',
93
- 'ravioli',
94
- 'red_velvet_cake',
95
- 'risotto',
96
- 'samosa',
97
- 'sashimi',
98
- 'scallops',
99
- 'seaweed_salad',
100
- 'shrimp_and_grits',
101
- 'spaghetti_bolognese',
102
- 'spaghetti_carbonara',
103
- 'spring_rolls',
104
- 'steak',
105
- 'strawberry_shortcake',
106
- 'sushi',
107
- 'tacos',
108
- 'takoyaki',
109
- 'tiramisu',
110
- 'tuna_tartare',
111
- 'waffles']
112
 
113
  top_ten_dict = {
114
- "class_name": ["edamame", "macarons", "oysters", "pho",
115
- "mussles", "sashimi", "seaweed_salad", "dumplings", "guacamole", "onion_rings"],
116
  "f1-score": [0.964427, 0.900433, 0.853119, 0.852652, 0.850622,
117
  0.844794, 0.834356, 0.833006, 0.83209, 0.831967]
118
  }
119
-
120
  last_ten_dict = {
121
- "class_name": ["chocolate_mousse", "tuna_tartare",
122
- "scallops", "huevos_rancheros", "foie_gras", "steak",
123
- "bread_pudding", "ravioli", "pork_chop", "apple_pie"],
124
- "f1-score": [0.413793, 0.399254, 0.383693, 0.367698,
125
- 0.354497, 0.340426, 0.340045, 0.339785, 0.324826, 0.282407]
126
  }
127
 
128
- # 🔹 Custom CSS for Full Width & Centered Content
129
  st.markdown(
130
  """
131
  <style>
132
- /* Make the main container wider */
133
- .main-container {
134
- max-width: 95% !important;
135
- margin: auto;
136
- }
137
-
138
- /* Center all content inside containers */
139
  .centered {
140
  display: flex;
141
  flex-direction: column;
142
  align-items: center;
143
- justify-content: center;
144
  text-align: center;
145
- width: 100%;
 
 
 
146
  }
147
 
148
- .centeredh {
149
- display: flex;
150
- width: 80%;
 
151
  }
152
-
153
- /* Ensure file uploader is not constrained */
154
- div[data-testid="stFileUploader"] {
155
- width: 70% !important;
156
  }
 
 
 
 
157
 
158
- /* Center images */
159
- img {
160
  display: block;
161
  margin-left: auto;
162
  margin-right: auto;
163
- width: 200px;
164
- height: 200px;
 
 
 
165
  border-radius: 20px;
 
166
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  </style>
168
  """,
169
  unsafe_allow_html=True
170
  )
171
 
172
- st.title("Food vision demo App 🍔🧠")
173
- st.header(
174
- "A food vision app, using a Machine Learning Model(CNN), fine tuned on EfficientNet.")
175
-
176
  st.divider()
177
- st.subheader("What is a CNN(Convolutional Neural Network)")
178
- st.write("A Neural network is network of nodes, consiting of input nodes, output nodes and hidden nodes.\
179
- Each node lies in its respective layer, corresponding to its name. \
180
- The input nodes reside in the input layer, the output nodes reside in the output layer and the hidden\
181
- nodes reside in the hidden layer. The nodes pass information from the input layer to the output layer.\
182
- The information consists of data(text, numbers, pictures, audio, videos) encoded as numbers\
183
- that the network uses to learn information. It does this through complex mathematical operations\
184
- and algorithms.")
185
-
186
- # Display image of Neural Network here in between dividers
187
-
188
- st.write("A Convolutional Neural Network in short is a version\
189
- of a Neural Network that specializes on Images, video, basically anything visual.")
190
 
191
- st.divider()
192
- code = """import tensorflow as tf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
  from tensorflow.keras import mixed_precision
194
 
195
- # Enable mixed precision
196
- mixed_precision.set_global_policy("mixed_float16")
197
-
198
- image_shape = (224, 224, 3)
199
-
200
- # Load EfficientNet with mixed precision
201
- base_model = tf.keras.applications.EfficientNetB0(include_top=False)
202
- base_model.trainable = False
203
-
204
- inputs = tf.keras.layers.Input(shape=image_shape, name="input_layer")
205
-
206
- # Apply data augmentation
207
- x = data_augmentation(inputs)
208
-
209
- x = base_model(x, training=False)
210
- x = tf.keras.layers.GlobalAveragePooling2D(name="global_average_pooling_layer")(x)
211
-
212
- x = tf.keras.layers.Dense(len(train_data.class_names), name="dense_logits")(x)
213
-
214
- # Ensure output layer remains in FP32
215
- outputs = tf.keras.layers.Activation(activation="softmax", dtype=tf.float32, name="predictions")(x)
216
-
217
- model = tf.keras.Model(inputs, outputs)
218
-
219
- # Use a LossScaleOptimizer to prevent numerical issues
220
- optimizer = mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam())
221
-
222
- model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  optimizer=optimizer,
224
  metrics=["accuracy"])
225
 
226
- # Train the model
227
- history = model.fit(train_data, epochs=5, validation_data=test_data,
228
- validation_steps=int(0.15 * len(test_data)),
229
- callbacks=[create_tensorboard_callback("model_mini", "model"), checkpoint_callback])"""
230
- st.subheader("Sample Code for the CNN using TensorFlow Functional API using Transfer Learning (NOT FULL CODE)")
231
- st.code(code, language="python")
232
- st.divider()
233
-
234
- st.divider()
235
-
236
- st.subheader("What is Efficient Net")
237
- st.write("EfficientNet is a family of convolutional neural networks that are designed to be more efficient and accurate. \
238
- It scales up the model's width, depth, and resolution in a balanced way, which helps to achieve better performance \
239
- with fewer resources. In simple terms, EfficientNet can achieve high accuracy on image classification tasks while \
240
- using less computational power and memory compared to other models.")
241
-
242
- st.divider()
243
- st.subheader("What is Fine Tuning")
244
- st.write("Fine-tuning is a process in machine learning where a pre-trained model is further trained on a new, but related, dataset. \
245
- This helps the model to adapt to the new data and improve its performance on specific tasks. \
246
- Essentially, it takes advantage of the knowledge the model has already gained and refines it for better accuracy.")
247
-
248
- st.divider()
249
- tune_code = """# Load feature extraction weights
250
- model.load_weights(checkpoint_path)
251
-
252
- # Unfreeze all layers in the base model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  base_model.trainable = True
254
 
255
- # Freeze all layers except the last 5
256
- for layer in base_model.layers[:-5]:
257
- layer.trainable = False
 
258
 
259
- # Use a LossScaleOptimizer to prevent numerical issues
260
- optimizer = mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam())
261
 
262
- # Recompile the Model with Lower Learning Rate to reduce overfitting
263
- model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
264
- optimizer=optimizer, metrics=["accuracy"]) # Learning rate lowered by 10x
 
265
 
266
- model_tuned_history = model.fit(train_data, epochs=10, initial_epoch=history.epoch[-1],
267
- validation_data=test_data, validation_steps=int(0.15 * len(test_data)),
268
- callbacks=[create_tensorboard_callback("model_mini", "model_tuned")])"""
269
 
270
- st.subheader("Example of Fine Tuning Using TensorFlow (NOT FULL CODE)")
271
- st.code(tune_code, language="python")
272
-
273
- st.divider()
274
- st.subheader("Model Building Details")
275
- st.write(f'The Model was built using the :blue[Food101 kaggle dataset].\
276
- The Dataset consist of 101 classes of Food.\
277
- Namely: {[food.replace("_", "").title() for food in class_names]}')
278
-
279
- st.divider()
280
- st.write("When predicting you have to pass an image of any of the 101 classes of food.\
281
- The Model has not yet been trained outside the 101 classes of food yet.")
282
-
283
- st.divider()
284
- st.subheader("Top and Least Classes Performance.")
285
- st.write("After training, some classes evidently performed better than others.\
286
- Below are the performance of the top classes and least classes based on the F1 score")
287
 
 
 
 
 
 
 
 
 
288
  st.divider()
289
- st.subheader("F1-score")
290
- st.write("The F1 score is a measure of a test's accuracy, which considers both the precision and the recall of the test to compute the score. The F1 score is the harmonic mean of precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. \
291
- Precision is the number of true positive results divided by the number of all positive results, including those not correctly identified (i.e., the proportion of positive identifications that were actually correct). \
292
- Recall (or Sensitivity) is the number of true positive results divided by the number of positives that should have been identified (i.e., the proportion of actual positives that were correctly identified).")
293
 
294
- st.divider()
295
- st.subheader("The formula for F1-score is")
296
- st.latex(r"F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}")
 
 
 
 
297
  st.divider()
298
 
299
- # Top 10 last 10 Bar charts
300
- st.subheader("Top and Least Classes")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
  with st.container():
302
- st.markdown('<div class="centeredh">', unsafe_allow_html=True) # START DIV BLOCK
 
303
 
304
- top_ten = pd.DataFrame(top_ten_dict).sort_values("f1-score", ascending=False)
305
- last_ten = pd.DataFrame(last_ten_dict).sort_values("f1-score", ascending=True)
 
306
 
307
- col1, col2 = st.columns(2)
308
 
 
309
  with col1:
310
- st.write("Top 10 Classes.")
311
- st.bar_chart(top_ten, x="class_name", y="f1-score",
312
- horizontal=True, use_container_width=True)
313
-
314
  with col2:
315
- st.write("Last 10 classes")
316
- st.bar_chart(last_ten, x="class_name", y="f1-score",
317
- horizontal=True, use_container_width=True, color="#ff748c")
318
-
319
- st.markdown('</div>', unsafe_allow_html=True) # CLOSE DIV BLOCK
320
-
321
- new_model = "Food Vision"
322
  st.divider()
323
- st.divider()
324
- st.header(f"Try out the Current Models, :blue[{current_model}] and :blue[{new_model}] your self.")
325
- st.caption("_The Model is periodically being improved. Model might change in the future_.")
326
 
327
 
 
 
328
  def load_model(filepath):
329
- """
330
- Loads a Tensorflow keras Model from a file path
331
-
332
- Args:
333
- filepath(str): File path to the Model.
334
-
335
- Returns
336
- A Tensorflow keras loaded Model.
337
- """
338
- with st.spinner("Loading Model..."):
339
- try:
340
- loaded_model = tf.keras.models.load_model(filepath)
341
- except Exception as e:
342
- st.error(f"Can't load Model: {e}")
343
- else:
344
- if loaded_model:
345
- return loaded_model
346
-
347
-
348
- def load_prep_image(image: UploadedFile, img_shape=224, scale=True):
349
- """
350
- Reads in an image and preprocesses it for model prediction
351
-
352
- Args:
353
- image (UploadedFile): path to target image
354
- img_shape (int): shape to resize image to. Default = 224
355
- scale (bool): Condition to scale image. Default = True
356
-
357
- Returns:
358
- Image Tensor of shape (img_shape, img_shape, 3)
359
- """
360
- bytes_data = image.getvalue()
361
- image_tensor = tf.io.decode_image(bytes_data, channels=3)
362
- image_tensor = tf.image.resize(image_tensor, [img_shape, img_shape])
363
- image_tensor = tf.expand_dims(image_tensor, axis=0) # Expand dimension as needed by Model
364
- if scale:
365
- scaled_image_tensor = image_tensor / 255. # If model does not have built in scaling
366
- return scaled_image_tensor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367
  else:
368
- return image_tensor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
 
 
370
 
371
- def predict_using_model(image: UploadedFile, model_path: str) -> str:
372
- """
373
- This function uses the CNN Model to predict the class name of the uploaded
374
- input image.
375
-
376
- Args:
377
- model_path(str): The path to the Model
378
- image(UploadedFile Object): the uploaded image.
379
-
380
- Returns:
381
- predicted_class_name(str): the name of the predicted class.
382
- """
383
- with st.spinner("Predicting using your image..."):
384
- # Process the image
385
- processed_image = load_prep_image(image, scale=False) # EfficientNet has built in scaling
386
- model = load_model(model_path)
387
- pred_prob = model.predict(processed_image)
388
- predicted_class = class_names[pred_prob.argmax()] # Get the predicted class name
389
 
390
- return predicted_class
 
 
 
391
 
 
 
 
 
392
 
393
- def toggle_checkbox(option: str) -> None:
394
- """Toggle upload checkboxes such that only one can be selected"""
395
- if option == "upload":
396
- st.session_state.upload = True
397
- st.session_state.camera = False
398
- elif option == "camera":
399
- st.session_state.upload = False
400
- st.session_state.camera = True
401
 
 
 
 
 
 
402
 
403
- def toggle_model(option: str) -> None:
404
- """Toggles model checkboxes such that only one can be selected"""
405
- if option == "model_mini":
406
- st.session_state.model_mini = True
407
- st.session_state.food_vision = False
408
- elif option == "food_vision":
409
- st.session_state.model_mini = False
410
- st.session_state.food_vision = True
411
 
 
 
 
 
 
412
 
413
- # 🔹 Apply the main container styling
414
- st.markdown('<div class="main-container">', unsafe_allow_html=True)
415
 
416
- # 🔹 Create a wider main container
417
- with st.container():
418
- # Define columns inside the main container
419
- cols = st.columns([3, 1, 2, 1, 2], gap="medium")
420
- has_predicted = False
421
- has_uploaded = False
422
-
423
- # 🖼️ Image Input Container
424
- with cols[0]:
425
- with st.container():
426
- st.markdown('<div class="centered">', unsafe_allow_html=True) # START DIV BLOCK
427
-
428
- with st.spinner("Uploading image..."):
429
- try:
430
- upload = st.checkbox("Upload Image", key="upload",
431
- on_change=toggle_checkbox, args=("upload",))
432
- camera = st.checkbox("Use your camera", key="camera",
433
- on_change=toggle_checkbox, args=("camera",))
434
- if upload:
435
- uploaded_image = st.file_uploader(label="Upload an image (Max 200MB)",
436
- type=["png", "jpg", "jpeg"],
437
- accept_multiple_files=False, key="uploaded_image")
438
-
439
- has_uploaded = True # To check if file_uploader widget has loaded
440
-
441
- if "uploaded_image" not in st.session_state:
442
- st.session_state["uploaded_image"] = uploaded_image
443
-
444
- elif camera:
445
- uploaded_image = st.camera_input("Take a Picture",
446
- disabled=not camera, key="uploaded_image")
447
-
448
- has_uploaded = True # To check if camera_input widget has loaded
449
-
450
- if "uploaded_image" not in st.session_state:
451
- st.session_state["uploaded_image"] = uploaded_image
452
-
453
- except Exception as e:
454
- st.error(f"Image Upload failed: {e}")
455
- else:
456
- if has_uploaded: # If file_uploader/camera_input widget has loaded
457
- if uploaded_image: # If user has uploaded an image
458
- st.success("Image Uploaded.")
459
- st.image(st.session_state.uploaded_image,
460
- caption="Your uploaded image", width=200)
461
-
462
- st.markdown('</div>', unsafe_allow_html=True) # CLOSE DIV BLOCK
463
-
464
- # ➡️ Arrow 1 Container
465
- with cols[1]:
466
- with st.container():
467
- st.markdown('<div class="centered">', unsafe_allow_html=True)
468
- st.write("➡️") # Example arrow to be changed to image
469
- st.markdown('</div>', unsafe_allow_html=True)
470
-
471
- # 🧠 Neural Network Image Container
472
- with cols[2]:
473
- with st.container():
474
- st.markdown('<div class="centered">', unsafe_allow_html=True)
475
-
476
- st.write("Pick a Model")
477
- model_mini = st.checkbox("Model Mini", key="model_mini",
478
- on_change=toggle_model, args=("model_mini",))
479
- food_vision = st.checkbox("Food Vision", key="food_vision",
480
- on_change=toggle_model, args=("food_vision",))
481
-
482
- if model_mini:
483
- st.image("brain.png")
484
- elif food_vision:
485
- st.image("content/creativity_15557951.png") # To be changed
486
-
487
- if has_uploaded:
488
- status = st.button(label="Predict Using Image", icon="⚛️", type="primary")
489
- if status and model_mini:
490
- result_class = predict_using_model(uploaded_image,
491
- model_path="model_mini_Food101.keras")
492
- has_predicted = True
493
- elif status and food_vision:
494
- result_class = predict_using_model(uploaded_image, model_path="FoodVision.keras")
495
- has_predicted = True
496
-
497
- st.markdown('</div>', unsafe_allow_html=True)
498
-
499
- # ➡️ Arrow 2 Container
500
- with cols[3]:
501
- with st.container():
502
- st.markdown('<div class="centered">', unsafe_allow_html=True)
503
- st.write("➡️") # Example arrow to be changed to image
504
- st.markdown('</div>', unsafe_allow_html=True)
505
-
506
- # 🏆 Output Container
507
- with cols[4]:
508
- with st.container():
509
- st.markdown('<div class="centered">', unsafe_allow_html=True)
510
- if has_predicted:
511
- st.image(st.session_state.uploaded_image)
512
- if "_" in result_class:
513
- modified_class = result_class.replace("_", "").title()
514
- st.write(f"This is an image of :blue[{modified_class}]")
515
- else:
516
- st.write(f"This is an image of :blue[{result_class.title()}]")
517
- else:
518
- st.write("The Image and Prediction will appear here")
519
- st.markdown('</div>', unsafe_allow_html=True)
520
-
521
- # Close the widened container
522
- st.markdown('</div>', unsafe_allow_html=True)
 
1
+ # -*- coding: utf-8 -*-
2
  import streamlit as st
3
  from streamlit.runtime.uploaded_file_manager import UploadedFile
4
  import tensorflow as tf
5
  import pandas as pd
6
+ from PIL import Image # Needed for image display consistency potentially
7
 
8
  # 🔹 Expand the Page Layout
9
+ st.set_page_config(layout="wide") # Use Streamlit's built-in wide layout
10
 
11
+ # --- Constants and Data ---
12
  current_model = "Model Mini"
13
+ new_model = "Food Vision" # Define the second model name
14
+ class_names = ['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare',
15
+ 'beet_salad', 'beignets', 'bibimbap', 'bread_pudding', 'breakfast_burrito',
16
+ 'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad', 'carrot_cake',
17
+ 'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla',
18
+ 'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder',
19
+ 'club_sandwich', 'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes',
20
+ 'deviled_eggs', 'donuts', 'dumplings', 'edamame', 'eggs_benedict', 'escargots',
21
+ 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras', 'french_fries',
22
+ 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice',
23
+ 'frozen_yogurt', 'garlic_bread', 'gnocchi', 'greek_salad',
24
+ 'grilled_cheese_sandwich', 'grilled_salmon', 'guacamole', 'gyoza', 'hamburger',
25
+ 'hot_and_sour_soup', 'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream',
26
+ 'lasagna', 'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese',
27
+ 'macarons', 'miso_soup', 'mussels', 'nachos', 'omelette', 'onion_rings',
28
+ 'oysters', 'pad_thai', 'paella', 'pancakes', 'panna_cotta', 'peking_duck',
29
+ 'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', 'pulled_pork_sandwich',
30
+ 'ramen', 'ravioli', 'red_velvet_cake', 'risotto', 'samosa', 'sashimi',
31
+ 'scallops', 'seaweed_salad', 'shrimp_and_grits', 'spaghetti_bolognese',
32
+ 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake',
33
+ 'sushi', 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  top_ten_dict = {
36
+ "class_name": ["edamame", "macarons", "oysters", "pho", "mussels", # Corrected 'mussles' -> 'mussels'
37
+ "sashimi", "seaweed_salad", "dumplings", "guacamole", "onion_rings"],
38
  "f1-score": [0.964427, 0.900433, 0.853119, 0.852652, 0.850622,
39
  0.844794, 0.834356, 0.833006, 0.83209, 0.831967]
40
  }
 
41
  last_ten_dict = {
42
+ "class_name": ["chocolate_mousse", "tuna_tartare", "scallops", "huevos_rancheros",
43
+ "foie_gras", "steak", "bread_pudding", "ravioli", "pork_chop", "apple_pie"],
44
+ "f1-score": [0.413793, 0.399254, 0.383693, 0.367698, 0.354497,
45
+ 0.340426, 0.340045, 0.339785, 0.324826, 0.282407]
 
46
  }
47
 
48
+ # 🔹 Custom CSS for Centered Content within elements and layout stability
49
  st.markdown(
50
  """
51
  <style>
52
+ /* Center content vertically and horizontally using flexbox */
 
 
 
 
 
 
53
  .centered {
54
  display: flex;
55
  flex-direction: column;
56
  align-items: center;
57
+ justify-content: center; /* Can adjust to flex-start if needed */
58
  text-align: center;
59
+ width: 100%; /* Take full width of its container (e.g., column) */
60
+ min-height: 300px; /* Give containers minimum height to reduce collapse */
61
+ padding-top: 20px; /* Add some padding */
62
+ padding-bottom: 20px;
63
  }
64
 
65
+ /* Style file uploader for better centering if needed */
66
+ /* Streamlit structure might change, this targets common patterns */
67
+ div[data-testid="stFileUploader"] > section {
68
+ padding: 0; /* Reduce default padding if it pushes content */
69
  }
70
+ div[data-testid="stFileUploader"] > section > input {
71
+ /* Hide default input if necessary */
 
 
72
  }
73
+ div[data-testid="stFileUploader"] label {
74
+ /* Style the label if needed */
75
+ }
76
+
77
 
78
+ /* Center images and standardize size */
79
+ .centered img { /* Target images specifically within centered divs */
80
  display: block;
81
  margin-left: auto;
82
  margin-right: auto;
83
+ max-width: 200px; /* Use max-width for responsiveness */
84
+ max-height: 200px; /* Use max-height */
85
+ width: auto; /* Allow auto width */
86
+ height: auto; /* Allow auto height */
87
+ object-fit: contain; /* Contain ensures the whole image fits */
88
  border-radius: 20px;
89
+ margin-bottom: 15px; /* Add space below image */
90
  }
91
+
92
+ /* Ensure columns try to vertically align content */
93
+ div[data-testid="stVerticalBlock"] div[data-testid="stHorizontalBlock"] {
94
+ align-items: center;
95
+ }
96
+
97
+ /* Style the radio buttons */
98
+ div[data-testid="stRadio"] > label {
99
+ font-weight: bold; /* Make label bold */
100
+ margin-bottom: 10px;
101
+ }
102
+ div[data-testid="stRadio"] > div {
103
+ display: flex;
104
+ justify-content: center; /* Center radio options */
105
+ gap: 15px; /* Add space between radio buttons */
106
+ }
107
+
108
+ /* Style the button */
109
+ div[data-testid="stButton"] > button {
110
+ width: 80%; /* Make button wider */
111
+ margin-top: 20px; /* Add space above button */
112
+ }
113
+
114
  </style>
115
  """,
116
  unsafe_allow_html=True
117
  )
118
 
119
+ # --- Page Title and Intro ---
120
+ st.title("Food Vision Demo App 🍔🧠")
121
+ st.header("A food vision app using a CNN model fine-tuned on EfficientNet.")
 
122
  st.divider()
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
+ # --- Explanations (Collapsible) ---
125
+ with st.expander("Learn More: What is a CNN?"):
126
+ st.write("""
127
+ A Neural Network is a system inspired by the human brain, composed of interconnected nodes (neurons) organized in layers: an input layer, one or more hidden layers, and an output layer.
128
+ Data (like text, numbers, images) is fed into the input layer, encoded as numbers. This information flows through the network, undergoing mathematical transformations at each node based on learned 'weights'.
129
+ The network 'learns' by adjusting these weights during training to minimize the difference between its predictions and the actual outcomes.
130
+ """)
131
+ # Consider adding a simple diagram URL if available
132
+ # st.image("url_to_neural_network_diagram.png")
133
+ st.write("""
134
+ A **Convolutional Neural Network (CNN)** is a specialized type of neural network particularly effective for processing grid-like data, such as images and videos.
135
+ CNNs use special layers called 'convolutional layers' that apply filters to input images to automatically learn hierarchical patterns, like edges, textures, and shapes. This makes them excellent for visual recognition tasks.
136
+ """)
137
+
138
+ with st.expander("Learn More: Sample CNN Code Snippet (TensorFlow/Keras)"):
139
+ st.write("This is a simplified example showing key components like using a pre-trained base model (EfficientNet), adding custom layers, enabling mixed precision (for faster training), and compiling the model.")
140
+ code = """
141
+ import tensorflow as tf
142
+ from tensorflow.keras import layers, models, applications
143
  from tensorflow.keras import mixed_precision
144
 
145
+ # --- Configuration ---
146
+ IMAGE_SHAPE = (224, 224, 3)
147
+ NUM_CLASSES = 101 # Example number of food classes
148
+
149
+ # --- Enable Mixed Precision (Optional but recommended for speed) ---
150
+ # mixed_precision.set_global_policy("mixed_float16")
151
+
152
+ # --- Data Augmentation Layer ---
153
+ # Define data augmentation transformations here
154
+ data_augmentation = tf.keras.Sequential([
155
+ layers.RandomFlip("horizontal"),
156
+ layers.RandomRotation(0.2),
157
+ layers.RandomZoom(0.2),
158
+ layers.RandomHeight(0.2),
159
+ layers.RandomWidth(0.2),
160
+ # Rescaling might be part of EfficientNet preprocessing, check docs
161
+ ], name="data_augmentation")
162
+
163
+ # --- Build the Model using Functional API ---
164
+ # 1. Input Layer
165
+ inputs = layers.Input(shape=IMAGE_SHAPE, name="input_layer")
166
+
167
+ # 2. Data Augmentation (applied during training)
168
+ # x = data_augmentation(inputs) # Apply augmentation first
169
+
170
+ # 3. Base Model (EfficientNetB0) - Transfer Learning
171
+ base_model = applications.EfficientNetB0(include_top=False, # Don't include the final classification layer
172
+ weights='imagenet', # Load pre-trained weights
173
+ input_shape=IMAGE_SHAPE)
174
+ base_model.trainable = False # Freeze the base model initially
175
+
176
+ # Pass input through base model (ensure correct preprocessing if not done before)
177
+ # EfficientNet often has a preprocessing function or handles rescaling internally
178
+ x = base_model(inputs, training=False) # Use inputs directly if augmentation is after base_model
179
+
180
+ # 4. Pooling Layer
181
+ x = layers.GlobalAveragePooling2D(name="global_average_pooling")(x)
182
+
183
+ # 5. Output Layer (Dense)
184
+ # The number of units must match the number of classes
185
+ # Use float32 for the final layer for numerical stability with mixed precision
186
+ logits = layers.Dense(NUM_CLASSES, name="dense_logits")(x)
187
+ outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_output")(logits)
188
+
189
+ # 6. Create the Model
190
+ model = models.Model(inputs=inputs, outputs=outputs)
191
+
192
+ # --- Compile the Model ---
193
+ # Use Adam optimizer (common choice)
194
+ optimizer = tf.keras.optimizers.Adam()
195
+ # If using mixed precision, wrap the optimizer
196
+ # optimizer = mixed_precision.LossScaleOptimizer(optimizer)
197
+
198
+ model.compile(loss="categorical_crossentropy", # Use if labels are one-hot encoded
199
  optimizer=optimizer,
200
  metrics=["accuracy"])
201
 
202
+ # --- Model Summary ---
203
+ # model.summary()
204
+
205
+ # --- Train the Model (Example) ---
206
+ # history = model.fit(train_data,
207
+ # epochs=5,
208
+ # validation_data=test_data,
209
+ # ...)
210
+ """
211
+ st.code(code, language="python")
212
+
213
+ with st.expander("Learn More: What is EfficientNet?"):
214
+ st.write("""
215
+ EfficientNet is a family of Convolutional Neural Networks (CNNs) developed by Google Brain.
216
+ Its key innovation is a method called **compound scaling**. Instead of arbitrarily increasing just the depth (number of layers), width (number of channels), or input image resolution, EfficientNet scales all three dimensions simultaneously using a fixed set of scaling coefficients.
217
+ This balanced scaling approach allows EfficientNet models (like EfficientNetB0, B1, ..., B7) to achieve state-of-the-art accuracy on image classification tasks while being significantly smaller and faster (more computationally efficient) than previous models with similar accuracy.
218
+ """)
219
+
220
+ with st.expander("Learn More: What is Fine-Tuning?"):
221
+ st.write("""
222
+ **Fine-tuning** is a transfer learning technique where you take a model pre-trained on a large dataset (like ImageNet, which contains millions of general images) and train it further on a smaller, specific dataset (like our Food-101 dataset).
223
+
224
+ **Why Fine-Tune?**
225
+ 1. **Leverage Existing Knowledge:** The pre-trained model has already learned general visual features (edges, textures, shapes) from the large dataset.
226
+ 2. **Faster Training:** You don't need to train the entire network from scratch, saving significant time and computational resources.
227
+ 3. **Better Performance on Small Datasets:** It often leads to better results than training from scratch, especially when your specific dataset is relatively small.
228
+
229
+ **Process:**
230
+ 1. **Load Pre-trained Model:** Load a model (like EfficientNet) with its pre-trained weights, typically excluding its final classification layer.
231
+ 2. **Freeze Base Layers:** Initially, keep the weights of the pre-trained layers frozen (`trainable = False`).
232
+ 3. **Add New Layers:** Add new layers on top (e.g., Pooling, Dense layers) suitable for your specific task (e.g., classifying 101 food types).
233
+ 4. **Train Top Layers:** Train *only* the new layers on your dataset for a few epochs.
234
+ 5. **(Optional but common) Unfreeze Some Layers:** Unfreeze some of the later layers of the base model (`trainable = True`).
235
+ 6. **Train with Low Learning Rate:** Continue training the entire network (or the unfrozen parts) with a very low learning rate. This allows the pre-trained weights to adapt slightly to the nuances of your specific dataset without drastically changing the learned general features.
236
+ """)
237
+
238
+ with st.expander("Learn More: Fine-Tuning Code Snippet (TensorFlow/Keras)"):
239
+ st.write("This snippet shows how to unfreeze layers and re-compile the model for fine-tuning, typically done *after* initial feature extraction training.")
240
+ tune_code = """
241
+ # --- Load weights from initial training phase (where base_model was frozen) ---
242
+ # model.load_weights(checkpoint_path_feature_extraction)
243
+
244
+ # --- Unfreeze some or all layers of the base model ---
245
  base_model.trainable = True
246
 
247
+ # --- Optional: Freeze earlier layers again (fine-tune only later layers) ---
248
+ # print(f"Number of layers in base model: {len(base_model.layers)}")
249
+ # Fine-tune from this layer onwards
250
+ # fine_tune_at = 100 # Example: Unfreeze layers from index 100 onwards
251
 
252
+ # for layer in base_model.layers[:fine_tune_at]:
253
+ # layer.trainable = False
254
 
255
+ # --- Re-compile the Model with a Lower Learning Rate ---
256
+ # Lowering the learning rate is crucial for fine-tuning to avoid
257
+ # destroying the pre-trained weights.
258
+ LOW_LEARNING_RATE = 0.0001 # Example: 10x smaller than initial LR
259
 
260
+ optimizer = tf.keras.optimizers.Adam(learning_rate=LOW_LEARNING_RATE)
261
+ # If using mixed precision:
262
+ # optimizer = mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam(learning_rate=LOW_LEARNING_RATE))
263
 
264
+ model.compile(loss="categorical_crossentropy",
265
+ optimizer=optimizer, # Use the optimizer with the low learning rate
266
+ metrics=["accuracy"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
 
268
+ # --- Continue Training (Fine-tuning) ---
269
+ # history_fine_tune = model.fit(train_data,
270
+ # epochs=initial_epochs + 5, # Train for a few more epochs
271
+ # initial_epoch=history.epoch[-1], # Start where previous training left off
272
+ # validation_data=test_data,
273
+ # ...)
274
+ """
275
+ st.code(tune_code, language="python")
276
  st.divider()
 
 
 
 
277
 
278
+ # --- Model Build Details ---
279
+ st.subheader("Model Building Details")
280
+ formatted_class_names = [food.replace("_", " ").title() for food in class_names]
281
+ st.write(f"The model was built using the **Food-101 dataset**.")
282
+ with st.expander("View All 101 Food Classes"):
283
+ st.write(f"The dataset consists of 101 classes of food: {', '.join(formatted_class_names)}")
284
+ st.info("When predicting, please provide an image belonging to one of these 101 classes. The model has not been trained on other types of food or objects.")
285
  st.divider()
286
 
287
+ # --- Model Performance ---
288
+ st.subheader("Model Performance Insights")
289
+ st.write("""
290
+ After training, some food classes are predicted more accurately than others.
291
+ This can be due to factors like the number of training images available for each class, visual similarity between classes, and image quality.
292
+ We use the **F1-score** to evaluate performance per class, as it balances precision and recall.
293
+ """)
294
+
295
+ with st.expander("What is the F1-Score?"):
296
+ st.write("""
297
+ The **F1-score** is a metric used to evaluate a model's accuracy on classification tasks, especially when dealing with imbalanced datasets (where some classes have many more samples than others). It's the harmonic mean of **Precision** and **Recall**.
298
+
299
+ * **Precision:** Out of all the times the model predicted a specific class (e.g., "Pizza"), what proportion were actually correct?
300
+ $$ \text{Precision} = \\frac{\\text{True Positives}}{\\text{True Positives} + \\text{False Positives}} $$
301
+ * **Recall (Sensitivity):** Out of all the actual instances of a specific class (e.g., all the real Pizza images), what proportion did the model correctly identify?
302
+ $$ \text{Recall} = \\frac{\\text{True Positives}}{\\text{True Positives} + \\text{False Negatives}} $$
303
+
304
+ The F1-score combines these two:
305
+ """)
306
+ st.latex(r"F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}")
307
+ st.write("An F1-score ranges from 0 (worst) to 1 (best - perfect precision and recall).")
308
+
309
+ # --- Top/Last 10 Charts ---
310
+ st.subheader("Top and Least Performing Classes (by F1-Score)")
311
  with st.container():
312
+ top_ten_df = pd.DataFrame(top_ten_dict).sort_values("f1-score", ascending=False)
313
+ last_ten_df = pd.DataFrame(last_ten_dict).sort_values("f1-score", ascending=True) # Already sorted ascendingly in dict creation usually
314
 
315
+ # Format class names for display
316
+ top_ten_df['class_name_display'] = top_ten_df['class_name'].str.replace('_', ' ').str.title()
317
+ last_ten_df['class_name_display'] = last_ten_df['class_name'].str.replace('_', ' ').str.title()
318
 
 
319
 
320
+ col1, col2 = st.columns(2)
321
  with col1:
322
+ st.write("**Top 10 Classes**")
323
+ st.bar_chart(top_ten_df.set_index('class_name_display')['f1-score'],
324
+ # horizontal=True, # Bar chart auto-detects horizontal best here
325
+ use_container_width=True)
326
  with col2:
327
+ st.write("**Bottom 10 Classes**")
328
+ st.bar_chart(last_ten_df.set_index('class_name_display')['f1-score'],
329
+ # horizontal=True,
330
+ use_container_width=True, color="#ff748c") # Red color for low scores
 
 
 
331
  st.divider()
 
 
 
332
 
333
 
334
+ # --- Helper Functions ---
335
+ @st.cache_resource # Cache the loaded model
336
  def load_model(filepath):
337
+ """Loads a Tensorflow Keras Model."""
338
+ st.write(f"Cache miss: Loading model from {filepath}") # Debug message
339
+ try:
340
+ model = tf.keras.models.load_model(filepath)
341
+ # You might need a warm-up prediction for GPU memory allocation
342
+ # For example: model.predict(tf.zeros([1, 224, 224, 3]))
343
+ return model
344
+ except Exception as e:
345
+ st.error(f"Error loading model from {filepath}: {e}")
346
+ return None
347
+
348
+ def load_prep_image(image_input: UploadedFile, img_shape=224):
349
+ """Reads and preprocesses an image for EfficientNet prediction."""
350
+ try:
351
+ # Read image file buffer
352
+ bytes_data = image_input.getvalue()
353
+ # Decode image
354
+ image_tensor = tf.io.decode_image(bytes_data, channels=3)
355
+ # Resize image
356
+ # Use tf.image.resize with method='nearest' or 'bilinear' (default)
357
+ image_tensor_resized = tf.image.resize(image_tensor, [img_shape, img_shape])
358
+ # Expand dimensions to create batch_size 1 -> (1, H, W, C)
359
+ image_tensor_expanded = tf.expand_dims(image_tensor_resized, axis=0)
360
+ # EfficientNet models usually have their own preprocessing layer/function
361
+ # or expect inputs scaled 0-255. Check the specific model's requirement.
362
+ # If it expects 0-1 scaling and doesn't do it internally:
363
+ # image_tensor_scaled = image_tensor_expanded / 255.0
364
+ # return image_tensor_scaled
365
+ # Assuming EfficientNet B0 handles scaling or expects 0-255:
366
+ return image_tensor_expanded
367
+ except Exception as e:
368
+ st.error(f"Error processing image: {e}")
369
+ return None
370
+
371
+ def predict_using_model(image_input: UploadedFile, model_path: str) -> tuple[str | None, float | None]:
372
+ """Predicts the class name and probability for an image."""
373
+ if image_input is None:
374
+ st.warning("No image provided for prediction.")
375
+ return None, None
376
+
377
+ processed_image = load_prep_image(image_input)
378
+ if processed_image is None:
379
+ return None, None
380
+
381
+ model = load_model(model_path)
382
+ if model is None:
383
+ return None, None
384
+
385
+ try:
386
+ with st.spinner("🤖 Model is predicting..."):
387
+ pred_prob = model.predict(processed_image)
388
+ predicted_index = tf.argmax(pred_prob, axis=1).numpy()[0] # Get index of highest probability
389
+ predicted_class_name = class_names[predicted_index]
390
+ predicted_probability = float(tf.reduce_max(pred_prob).numpy()) # Get the highest probability
391
+ return predicted_class_name, predicted_probability
392
+ except Exception as e:
393
+ st.error(f"Prediction failed: {e}")
394
+ return None, None
395
+
396
+ # --- Interactive Demo Section ---
397
+ st.divider()
398
+ st.header(f"Try the Models: :blue[{current_model}] & :blue[{new_model}]")
399
+ st.caption("_Model performance may vary. Models are periodically updated._")
400
+
401
+ # Initialize session state keys if they don't exist
402
+ if "prediction_result" not in st.session_state:
403
+ st.session_state.prediction_result = None
404
+ if "predicted_image_bytes" not in st.session_state:
405
+ st.session_state.predicted_image_bytes = None
406
+ if "predicted_prob" not in st.session_state:
407
+ st.session_state.predicted_prob = None
408
+
409
+
410
+ # Use columns for layout
411
+ cols = st.columns([3, 0.5, 2, 0.5, 3], gap="medium") # Adjusted column ratios and gaps
412
+
413
+ # --- Column 1: Image Input ---
414
+ with cols[0]:
415
+ st.markdown('<div class="centered">', unsafe_allow_html=True) # Apply centering
416
+ st.subheader("1. Provide an Image")
417
+ image_source = st.radio(
418
+ "Choose image source:",
419
+ ("Upload Image", "Use Camera"),
420
+ key="image_source",
421
+ horizontal=True,
422
+ label_visibility="collapsed" # Hide the radio label itself
423
+ )
424
+
425
+ uploaded_image = None
426
+ image_bytes_for_state = None
427
+
428
+ if image_source == "Upload Image":
429
+ uploaded_image = st.file_uploader(
430
+ "Upload (.png, .jpg, .jpeg)",
431
+ type=["png", "jpg", "jpeg"],
432
+ accept_multiple_files=False,
433
+ key="uploader",
434
+ label_visibility="collapsed"
435
+ )
436
+ elif image_source == "Use Camera":
437
+ uploaded_image = st.camera_input(
438
+ "Take a picture",
439
+ key="camera_input",
440
+ label_visibility="collapsed"
441
+ )
442
+
443
+ # Display uploaded image preview
444
+ if uploaded_image:
445
+ image_bytes_for_state = uploaded_image.getvalue() # Store bytes for state
446
+ st.image(image_bytes_for_state, caption="Your image", use_column_width='auto') # Auto width fits container
447
+ st.success("Image ready!")
448
  else:
449
+ st.info("Upload or take a picture.")
450
+
451
+ st.markdown('</div>', unsafe_allow_html=True) # Close centered div
452
+
453
+ # --- Column 2: Arrow 1 ---
454
+ with cols[1]:
455
+ st.markdown('<div class="centered" style="justify-content: center; min-height: 300px;">➡️</div>', unsafe_allow_html=True)
456
+
457
+ # --- Column 3: Model Selection & Prediction ---
458
+ with cols[2]:
459
+ st.markdown('<div class="centered">', unsafe_allow_html=True) # Apply centering
460
+ st.subheader("2. Select Model")
461
+
462
+ chosen_model = st.radio(
463
+ "Pick a Model:",
464
+ (current_model, new_model),
465
+ key="model_choice",
466
+ horizontal=True,
467
+ label_visibility="collapsed"
468
+ )
469
+
470
+ model_path_to_use = ""
471
+ model_image_path = ""
472
+
473
+ if chosen_model == current_model: # Model Mini
474
+ model_image_path = "brain.png" # Make sure this file exists
475
+ model_path_to_use = "model_mini_Food101.keras" # Make sure this path is correct
476
+ elif chosen_model == new_model: # Food Vision
477
+ model_image_path = "content/creativity_15557951.png" # Make sure this file exists
478
+ model_path_to_use = "FoodVision.keras" # Make sure this path is correct
479
+
480
+ # Display model icon/image if path is valid
481
+ try:
482
+ if model_image_path:
483
+ st.image(model_image_path, width=150) # Control model image size
484
+ except Exception as e:
485
+ st.warning(f"Could not load model image: {model_image_path}")
486
+
487
+ # Prediction Button
488
+ predict_button = st.button(
489
+ label="Predict Food!",
490
+ icon="⚛️",
491
+ type="primary",
492
+ use_container_width=True, # Make button fill column width
493
+ disabled=not uploaded_image or not model_path_to_use # Disable if no image or path
494
+ )
495
+
496
+ if predict_button:
497
+ if uploaded_image and model_path_to_use:
498
+ # Perform prediction
499
+ result_class, result_prob = predict_using_model(uploaded_image, model_path=model_path_to_use)
500
+ # Store results in session state
501
+ st.session_state.prediction_result = result_class
502
+ st.session_state.predicted_prob = result_prob
503
+ st.session_state.predicted_image_bytes = image_bytes_for_state # Store the bytes of the image used
504
+ else:
505
+ st.warning("Please provide an image and select a valid model.")
506
 
507
+ st.markdown('</div>', unsafe_allow_html=True) # Close centered div
508
 
509
+ # --- Column 4: Arrow 2 ---
510
+ with cols[3]:
511
+ st.markdown('<div class="centered" style="justify-content: center; min-height: 300px;">➡️</div>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
 
513
+ # --- Column 5: Output ---
514
+ with cols[4]:
515
+ st.markdown('<div class="centered">', unsafe_allow_html=True) # Apply centering
516
+ st.subheader("3. Prediction Result")
517
 
518
+ # Display result from session state
519
+ if st.session_state.prediction_result and st.session_state.predicted_image_bytes:
520
+ # Display the image associated with the prediction
521
+ st.image(st.session_state.predicted_image_bytes, caption="Image Analyzed", use_column_width='auto')
522
 
523
+ result_class = st.session_state.prediction_result
524
+ probability = st.session_state.predicted_prob
 
 
 
 
 
 
525
 
526
+ # Format class name nicely
527
+ if "_" in result_class:
528
+ modified_class = result_class.replace("_", " ").title()
529
+ else:
530
+ modified_class = result_class.title()
531
 
532
+ st.success(f"Prediction: **:blue[{modified_class}]**")
533
+ if probability:
534
+ st.write(f"Confidence: {probability:.2%}") # Display confidence
 
 
 
 
 
535
 
536
+ elif predict_button:
537
+ # If button was clicked but prediction failed or had no result
538
+ st.error("Prediction could not be completed. Check logs or try again.")
539
+ else:
540
+ st.info("Result will appear here after prediction.")
541
 
542
+ st.markdown('</div>', unsafe_allow_html=True) # Close centered div
 
543
 
544
+ # --- Footer or Final Divider ---
545
+ st.divider()