File size: 20,138 Bytes
6b2d096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d210e
6b2d096
 
b1d210e
6b2d096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import streamlit as st
from streamlit.runtime.uploaded_file_manager import UploadedFile
import tensorflow as tf
import pandas as pd

# 🔹 Expand the Page Layout
st.set_page_config(layout="wide")  # Forces full-width mode

current_model = "Model Mini"

class_names = ['apple_pie',
               'baby_back_ribs',
               'baklava',
               'beef_carpaccio',
               'beef_tartare',
               'beet_salad',
               'beignets',
               'bibimbap',
               'bread_pudding',
               'breakfast_burrito',
               'bruschetta',
               'caesar_salad',
               'cannoli',
               'caprese_salad',
               'carrot_cake',
               'ceviche',
               'cheese_plate',
               'cheesecake',
               'chicken_curry',
               'chicken_quesadilla',
               'chicken_wings',
               'chocolate_cake',
               'chocolate_mousse',
               'churros',
               'clam_chowder',
               'club_sandwich',
               'crab_cakes',
               'creme_brulee',
               'croque_madame',
               'cup_cakes',
               'deviled_eggs',
               'donuts',
               'dumplings',
               'edamame',
               'eggs_benedict',
               'escargots',
               'falafel',
               'filet_mignon',
               'fish_and_chips',
               'foie_gras',
               'french_fries',
               'french_onion_soup',
               'french_toast',
               'fried_calamari',
               'fried_rice',
               'frozen_yogurt',
               'garlic_bread',
               'gnocchi',
               'greek_salad',
               'grilled_cheese_sandwich',
               'grilled_salmon',
               'guacamole',
               'gyoza',
               'hamburger',
               'hot_and_sour_soup',
               'hot_dog',
               'huevos_rancheros',
               'hummus',
               'ice_cream',
               'lasagna',
               'lobster_bisque',
               'lobster_roll_sandwich',
               'macaroni_and_cheese',
               'macarons',
               'miso_soup',
               'mussels',
               'nachos',
               'omelette',
               'onion_rings',
               'oysters',
               'pad_thai',
               'paella',
               'pancakes',
               'panna_cotta',
               'peking_duck',
               'pho',
               'pizza',
               'pork_chop',
               'poutine',
               'prime_rib',
               'pulled_pork_sandwich',
               'ramen',
               'ravioli',
               'red_velvet_cake',
               'risotto',
               'samosa',
               'sashimi',
               'scallops',
               'seaweed_salad',
               'shrimp_and_grits',
               'spaghetti_bolognese',
               'spaghetti_carbonara',
               'spring_rolls',
               'steak',
               'strawberry_shortcake',
               'sushi',
               'tacos',
               'takoyaki',
               'tiramisu',
               'tuna_tartare',
               'waffles']

top_ten_dict = {
    "class_name": ["edamame", "macarons", "oysters", "pho",
                   "mussles", "sashimi", "seaweed_salad", "dumplings", "guacamole", "onion_rings"],
    "f1-score": [0.964427, 0.900433, 0.853119, 0.852652, 0.850622,
                 0.844794, 0.834356, 0.833006, 0.83209, 0.831967]
}

last_ten_dict = {
    "class_name": ["chocolate_mousse", "tuna_tartare",
                   "scallops", "huevos_rancheros", "foie_gras", "steak",
                   "bread_pudding", "ravioli", "pork_chop", "apple_pie"],
    "f1-score": [0.413793, 0.399254, 0.383693, 0.367698,
                 0.354497, 0.340426, 0.340045, 0.339785, 0.324826, 0.282407]
}

# 🔹 Custom CSS for Full Width & Centered Content
st.markdown(
    """
    <style>
        /* Make the main container wider */
        .main-container {
            max-width: 95% !important;
            margin: auto;
        }

        /* Center all content inside containers */
        .centered {
            display: flex;
            flex-direction: column;
            align-items: center;
            justify-content: center;
            text-align: center;
            width: 100%;
        }

        .centeredh {
            display: flex;
            width: 80%;
        }

        /* Ensure file uploader is not constrained */
        div[data-testid="stFileUploader"] {
            width: 70% !important;
        }

        /* Center images */
        img {
            display: block;
            margin-left: auto;
            margin-right: auto;
            width: 200px;
            height: 200px;
            border-radius: 20px;
        }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Food vision demo App 🍔🧠")
st.header(
    "A food vision app, using a Machine Learning Model(CNN), fine tuned on EfficientNet.")

st.divider()
st.subheader("What is a CNN(Convolutional Neural Network)")
st.write("A Neural network is network of nodes, consiting of input nodes, output nodes and hidden nodes.\
    Each node lies in its respective layer, corresponding to its name. \
         The input nodes reside in the input layer, the output nodes reside in the output layer and the hidden\
            nodes reside in the hidden layer. The nodes pass information from the input layer to the output layer.\
                The information consists of data(text, numbers, pictures, audio, videos) encoded as numbers\
                    that the network uses to learn information. It does this through complex mathematical operations\
                        and algorithms.")

# Display image of Neural Network here in between dividers

st.write("A Convolutional Neural Network in short is a version\
     of a Neural Network that specializes on Images, video, basically anything visual.")

st.divider()
code = """import tensorflow as tf
from tensorflow.keras import mixed_precision

# Enable mixed precision
mixed_precision.set_global_policy("mixed_float16")

image_shape = (224, 224, 3)

# Load EfficientNet with mixed precision
base_model = tf.keras.applications.EfficientNetB0(include_top=False)
base_model.trainable = False

inputs = tf.keras.layers.Input(shape=image_shape, name="input_layer")

# Apply data augmentation
x = data_augmentation(inputs)

x = base_model(x, training=False)
x = tf.keras.layers.GlobalAveragePooling2D(name="global_average_pooling_layer")(x)

x = tf.keras.layers.Dense(len(train_data.class_names), name="dense_logits")(x)

# Ensure output layer remains in FP32
outputs = tf.keras.layers.Activation(activation="softmax", dtype=tf.float32, name="predictions")(x)

model = tf.keras.Model(inputs, outputs)

# Use a LossScaleOptimizer to prevent numerical issues
optimizer = mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam())

model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
              optimizer=optimizer,
              metrics=["accuracy"])

# Train the model
history = model.fit(train_data, epochs=5, validation_data=test_data,
                    validation_steps=int(0.15 * len(test_data)),
                    callbacks=[create_tensorboard_callback("model_mini", "model"), checkpoint_callback])"""
st.subheader("Sample Code for the CNN using TensorFlow Functional API using Transfer Learning (NOT FULL CODE)")
st.code(code, language="python")
st.divider()

st.divider()

st.subheader("What is Efficient Net")
st.write("EfficientNet is a family of convolutional neural networks that are designed to be more efficient and accurate. \
    It scales up the model's width, depth, and resolution in a balanced way, which helps to achieve better performance \
    with fewer resources. In simple terms, EfficientNet can achieve high accuracy on image classification tasks while \
    using less computational power and memory compared to other models.")

st.divider()
st.subheader("What is Fine Tuning")
st.write("Fine-tuning is a process in machine learning where a pre-trained model is further trained on a new, but related, dataset. \
    This helps the model to adapt to the new data and improve its performance on specific tasks. \
    Essentially, it takes advantage of the knowledge the model has already gained and refines it for better accuracy.")

st.divider()
tune_code = """# Load feature extraction weights
model.load_weights(checkpoint_path)

# Unfreeze all layers in the base model
base_model.trainable = True

# Freeze all layers except the last 5
for layer in base_model.layers[:-5]:
    layer.trainable = False

# Use a LossScaleOptimizer to prevent numerical issues
optimizer = mixed_precision.LossScaleOptimizer(tf.keras.optimizers.Adam())

# Recompile the Model with Lower Learning Rate to reduce overfitting
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
              optimizer=optimizer, metrics=["accuracy"]) # Learning rate lowered by 10x

model_tuned_history = model.fit(train_data, epochs=10, initial_epoch=history.epoch[-1],
                                validation_data=test_data, validation_steps=int(0.15 * len(test_data)),
                                callbacks=[create_tensorboard_callback("model_mini", "model_tuned")])"""

st.subheader("Example of Fine Tuning Using TensorFlow (NOT FULL CODE)")
st.code(tune_code, language="python")

st.divider()
st.subheader("Model Building Details")
st.write(f'The Model was built using the :blue[Food101 kaggle dataset].\
 The Dataset consist of 101 classes of Food.\
     Namely: {[food.replace("_", "").title() for food in class_names]}')

st.divider()
st.write("When predicting you have to pass an image of any of the 101 classes of food.\
     The Model has not yet been trained outside the 101 classes of food yet.")

st.divider()
st.subheader("Top and Least Classes Performance.")
st.write("After training, some classes evidently performed better than others.\
     Below are the performance of the top classes and least classes based on the F1 score")

st.divider()
st.subheader("F1-score")
st.write("The F1 score is a measure of a test's accuracy, which considers both the precision and the recall of the test to compute the score. The F1 score is the harmonic mean of precision and recall, where an F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0. \
    Precision is the number of true positive results divided by the number of all positive results, including those not correctly identified (i.e., the proportion of positive identifications that were actually correct). \
        Recall (or Sensitivity) is the number of true positive results divided by the number of positives that should have been identified (i.e., the proportion of actual positives that were correctly identified).")

st.divider()
st.subheader("The formula for F1-score is")
st.latex(r"F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}")
st.divider()

# Top 10 last 10 Bar charts
st.subheader("Top and Least Classes")
with st.container():
    st.markdown('<div class="centeredh">', unsafe_allow_html=True)  # START DIV BLOCK

    top_ten = pd.DataFrame(top_ten_dict).sort_values("f1-score", ascending=False)
    last_ten = pd.DataFrame(last_ten_dict).sort_values("f1-score", ascending=True)

    col1, col2 = st.columns(2)

    with col1:
        st.write("Top 10 Classes.")
        st.bar_chart(top_ten, x="class_name", y="f1-score",
                     horizontal=True, use_container_width=True)

    with col2:
        st.write("Last 10 classes")
        st.bar_chart(last_ten, x="class_name", y="f1-score",
                     horizontal=True, use_container_width=True, color="#ff748c")

    st.markdown('</div>', unsafe_allow_html=True)  # CLOSE DIV BLOCK

new_model = "Food Vision"
st.divider()
st.divider()
st.header(f"Try out the Current Models, :blue[{current_model}] and :blue[{new_model}] your self.")
st.caption("_The Model is periodically being improved. Model might change in the future_.")


def load_model(filepath):
    """
    Loads a Tensorflow keras Model from a file path

        Args:
            filepath(str): File path to the Model.

        Returns
            A Tensorflow keras loaded Model.
    """
    with st.spinner("Loading Model..."):
        try:
            loaded_model = tf.keras.models.load_model(filepath)
        except Exception as e:
            st.error(f"Can't load Model: {e}")
        else:
            if loaded_model:
                return loaded_model


def load_prep_image(image: UploadedFile, img_shape=224, scale=True):
    """
        Reads in an image and preprocesses it for model prediction

        Args:
            image (UploadedFile): path to target image
            img_shape (int): shape to resize image to. Default = 224
            scale (bool): Condition to scale image. Default = True

        Returns:
            Image Tensor of shape (img_shape, img_shape, 3)
    """
    bytes_data = image.getvalue()
    image_tensor = tf.io.decode_image(bytes_data, channels=3)
    image_tensor = tf.image.resize(image_tensor, [img_shape, img_shape])
    image_tensor = tf.expand_dims(image_tensor, axis=0)  # Expand dimension as needed by Model
    if scale:
        scaled_image_tensor = image_tensor / 255.  # If model does not have built in scaling
        return scaled_image_tensor
    else:
        return image_tensor


def predict_using_model(image: UploadedFile, model_path: str) -> str:
    """
        This function uses the CNN Model to predict the class name of the uploaded
        input image.

        Args:
            model_path(str): The path to the Model
            image(UploadedFile Object): the uploaded image.
        
        Returns:
            predicted_class_name(str): the name of the predicted class.
    """
    with st.spinner("Predicting using your image..."):
        # Process the image
        processed_image = load_prep_image(image, scale=False)  # EfficientNet has built in scaling
        model = load_model(model_path)
        pred_prob = model.predict(processed_image)
        predicted_class = class_names[pred_prob.argmax()]  # Get the predicted class name

    return predicted_class


def toggle_checkbox(option: str) -> None:
    """Toggle upload checkboxes such that only one can be selected"""
    if option == "upload":
        st.session_state.upload = True
        st.session_state.camera = False
    elif option == "camera":
        st.session_state.upload = False
        st.session_state.camera = True


def toggle_model(option: str) -> None:
    """Toggles model checkboxes such that only one can be selected"""
    if option == "model_mini":
        st.session_state.model_mini = True
        st.session_state.food_vision = False
    elif option == "food_vision":
        st.session_state.model_mini = False
        st.session_state.food_vision = True


# 🔹 Apply the main container styling
st.markdown('<div class="main-container">', unsafe_allow_html=True)

# 🔹 Create a wider main container
with st.container():
    # Define columns inside the main container
    cols = st.columns([3, 1, 2, 1, 2], gap="medium")
    has_predicted = False
    has_uploaded = False

    # 🖼️ Image Input Container
    with cols[0]:
        with st.container():
            st.markdown('<div class="centered">', unsafe_allow_html=True)  # START DIV BLOCK

            with st.spinner("Uploading image..."):
                try:
                    upload = st.checkbox("Upload Image", key="upload",
                                         on_change=toggle_checkbox, args=("upload",))
                    camera = st.checkbox("Use your camera", key="camera",
                                         on_change=toggle_checkbox, args=("camera",))
                    if upload:
                        uploaded_image = st.file_uploader(label="Upload an image (Max 200MB)",
                                                          type=["png", "jpg", "jpeg"],
                                                          accept_multiple_files=False, key="uploaded_image")

                        has_uploaded = True  # To check if file_uploader widget has loaded

                        if "uploaded_image" not in st.session_state:
                            st.session_state["uploaded_image"] = uploaded_image

                    elif camera:
                        uploaded_image = st.camera_input("Take a Picture",
                                                         disabled=not camera, key="uploaded_image")

                        has_uploaded = True  # To check if camera_input widget has loaded

                        if "uploaded_image" not in st.session_state:
                            st.session_state["uploaded_image"] = uploaded_image

                except Exception as e:
                    st.error(f"Image Upload failed: {e}")
                else:
                    if has_uploaded:  # If file_uploader/camera_input widget has loaded
                        if uploaded_image:  # If user has uploaded an image
                            st.success("Image Uploaded.")
                            st.image(st.session_state.uploaded_image,
                                      caption="Your uploaded image", width=200)

            st.markdown('</div>', unsafe_allow_html=True)  # CLOSE DIV BLOCK

    # ➡️ Arrow 1 Container
    with cols[1]:
        with st.container():
            st.markdown('<div class="centered">', unsafe_allow_html=True)
            st.write("➡️")  # Example arrow to be changed to image
            st.markdown('</div>', unsafe_allow_html=True)

    # 🧠 Neural Network Image Container
    with cols[2]:
        with st.container():
            st.markdown('<div class="centered">', unsafe_allow_html=True)

            st.write("Pick a Model")
            model_mini = st.checkbox("Model Mini", key="model_mini",
                                      on_change=toggle_model, args=("model_mini",))
            food_vision = st.checkbox("Food Vision", key="food_vision",
                                       on_change=toggle_model, args=("food_vision",))

            if model_mini:
                st.image("brain.png")
            elif food_vision:
                st.image("content/creativity_15557951.png")  # To be changed

            if has_uploaded:
                status = st.button(label="Predict Using Image", icon="⚛️", type="primary")
                if status and model_mini:
                    result_class = predict_using_model(uploaded_image,
                                                        model_path="model_mini_Food101.keras")
                    has_predicted = True
                elif status and food_vision:
                    result_class = predict_using_model(uploaded_image, model_path="FoodVision.keras")
                    has_predicted = True

            st.markdown('</div>', unsafe_allow_html=True)

    # ➡️ Arrow 2 Container
    with cols[3]:
        with st.container():
            st.markdown('<div class="centered">', unsafe_allow_html=True)
            st.write("➡️")  # Example arrow to be changed to image
            st.markdown('</div>', unsafe_allow_html=True)

    # 🏆 Output Container
    with cols[4]:
        with st.container():
            st.markdown('<div class="centered">', unsafe_allow_html=True)
            if has_predicted:
                st.image(st.session_state.uploaded_image)
                if "_" in result_class:
                    modified_class = result_class.replace("_", "").title()
                    st.write(f"This is an image of :blue[{modified_class}]")
                else:
                    st.write(f"This is an image of :blue[{result_class.title()}]")
            else:
                st.write("The Image and Prediction will appear here")
            st.markdown('</div>', unsafe_allow_html=True)

# Close the widened container
st.markdown('</div>', unsafe_allow_html=True)