Spaces:
Running
Running
File size: 18,238 Bytes
9a73686 2c79988 f351ad2 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 f351ad2 2c79988 230e3e0 2c79988 f351ad2 2c79988 230e3e0 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 230e3e0 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 f351ad2 2c79988 230e3e0 2c79988 230e3e0 2c79988 230e3e0 2c79988 230e3e0 2c79988 f351ad2 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 9a73686 2c79988 230e3e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gradio as gr
import json
import tempfile
import os
import re # For parsing conversation
from typing import Union, Optional, Dict, Tuple # Import Dict and Tuple
# Import the actual functions from synthgen
from synthgen import (
generate_synthetic_text,
generate_prompts,
generate_synthetic_conversation
)
# We no longer need to import api_key here or check it directly in app.py
# --- Helper Functions for JSON Generation ---
# Use Union for Python < 3.10 compatibility
def create_json_file(data: object, base_filename: str) -> Union[str, None]:
"""Creates a temporary JSON file and returns its path."""
try:
# Create a temporary file with a .json extension
with tempfile.NamedTemporaryFile(mode='w', suffix=".json", delete=False, encoding='utf-8') as temp_file:
json.dump(data, temp_file, indent=4, ensure_ascii=False)
return temp_file.name # Return the path to the temporary file
except Exception as e:
print(f"Error creating JSON file {base_filename}: {e}")
return None
def parse_conversation_string(text: str) -> list[dict]:
"""Parses a multi-line conversation string into a list of message dictionaries."""
messages = []
# Regex to capture "User:" or "Assistant:" at the start of a line, followed by content
pattern = re.compile(r"^(User|Assistant):\s*(.*)$", re.IGNORECASE | re.MULTILINE)
matches = pattern.finditer(text)
for match in matches:
role = match.group(1).lower()
content = match.group(2).strip()
messages.append({"role": role, "content": content})
# If parsing fails or format is unexpected, return raw text in a single message?
# Or return empty list? Let's return what we found.
if not messages and text: # If regex found nothing but text exists
print(f"Warning: Could not parse conversation structure for: '{text[:100]}...'")
# Fallback: return the whole text as a single assistant message? Or user?
# Let's return a generic system message indicating the raw content
# return [{"role": "system", "content": f"Unparsed conversation text: {text}"}]
# Or maybe just return empty, TBD based on preference
pass # Return empty list if parsing fails for now
return messages
# Wrapper for text generation (remains largely the same, but error handling is improved in synthgen)
def run_generation(prompt: str, model: str, num_samples: int) -> str:
"""
Wrapper function for Gradio interface to generate multiple text samples.
Relies on generate_synthetic_text for API calls and error handling.
"""
if not prompt:
return "Error: Please enter a prompt."
if num_samples <= 0:
return "Error: Number of samples must be positive."
output = f"Generating {num_samples} samples using model '{model}'...\n"
output += "="*20 + "\n\n"
# generate_synthetic_text now handles API errors internally
for i in range(num_samples):
# The function returns the text or an error string starting with "Error:"
generated_text = generate_synthetic_text(prompt, model)
output += f"--- Sample {i+1} ---\n"
output += generated_text + "\n\n" # Append result directly
output += "="*20 + "\nGeneration complete (check results above for errors)."
return output
# Removed the placeholder backend functions (generate_prompts_backend, generate_single_conversation)
# Modified function to handle multiple conversation prompts using the real backend
def run_conversation_generation(system_prompts_text: str, model: str, num_turns: int) -> str:
"""
Wrapper function for Gradio interface to generate multiple conversations
based on a list of prompts, calling generate_synthetic_conversation.
"""
if not system_prompts_text:
return "Error: Please enter or generate at least one system prompt/topic."
if num_turns <= 0:
return "Error: Number of turns must be positive."
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
if not prompts:
return "Error: No valid prompts found in the input."
output = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
output += "="*40 + "\n\n"
for i, prompt in enumerate(prompts):
# Call the actual function from synthgen.py
# It handles API calls and returns the conversation or an error string.
conversation_text = generate_synthetic_conversation(prompt, model, num_turns)
# We don't need a try-except here because the function itself returns error strings
# The title is now included within the returned string from the function
output += f"--- Conversation {i+1}/{len(prompts)} ---\n"
output += conversation_text + "\n\n" # Append result directly
output += "="*40 + "\nGeneration complete (check results above for errors)."
return output
# Helper function for the Gradio UI to generate prompts using the real backend
def generate_prompts_ui(
num_prompts: int,
model: str,
temperature: float, # Add settings
top_p: float,
max_tokens: int
) -> str:
"""UI Wrapper to call the generate_prompts backend and format for Textbox."""
# Handle optional settings
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
# Use a specific max_tokens for prompt generation or pass from UI? Let's pass from UI
max_tokens_val = max_tokens if max_tokens > 0 else 200 # Set a default if UI value is 0
if not model:
return "Error: Please select a model for prompt generation."
if num_prompts <= 0:
return "Error: Number of prompts to generate must be positive."
if num_prompts > 50:
return "Error: Cannot generate more than 50 prompts at a time."
print(f"Generating prompts with settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val}") # Debug print
try:
# Call the actual function from synthgen.py, passing settings
prompts_list = generate_prompts(
num_prompts,
model,
temperature=temp_val,
top_p=top_p_val,
max_tokens=max_tokens_val
)
return "\n".join(prompts_list)
except ValueError as e:
# Catch errors raised by generate_prompts (e.g., API errors, parsing errors)
return f"Error generating prompts: {e}"
except Exception as e:
# Catch any other unexpected errors
print(f"Unexpected error in generate_prompts_ui: {e}")
return f"An unexpected error occurred: {e}"
# --- Modified Generation Wrappers ---
# Wrapper for text generation + JSON preparation - RETURNS TUPLE
def run_generation_and_prepare_json(
prompt: str,
model: str,
num_samples: int,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]: # Return type hint (optional)
"""Generates text samples and prepares a JSON file for download."""
# Handle optional settings
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# Handle errors by returning updates for both outputs in a tuple
if not prompt:
return (gr.update(value="Error: Please enter a prompt."), gr.update(value=None))
if num_samples <= 0:
return (gr.update(value="Error: Number of samples must be positive."), gr.update(value=None))
output_str = f"Generating {num_samples} samples using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
output_str += "="*20 + "\n\n"
results_list = []
for i in range(num_samples):
generated_text = generate_synthetic_text(
prompt, model, temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += f"--- Sample {i+1} ---\n"
output_str += generated_text + "\n\n"
if not generated_text.startswith("Error:"):
results_list.append(generated_text)
output_str += "="*20 + "\nGeneration complete (check results above for errors)."
json_filepath = create_json_file(results_list, "text_samples.json")
# Return tuple of updates in the order of outputs list
return (gr.update(value=output_str), gr.update(value=json_filepath))
# Wrapper for conversation generation + JSON preparation - RETURNS TUPLE
def run_conversation_generation_and_prepare_json(
system_prompts_text: str,
model: str,
num_turns: int,
temperature: float,
top_p: float,
max_tokens: int
) -> Tuple[gr.update, gr.update]: # Return type hint (optional)
"""Generates conversations and prepares a JSON file for download."""
temp_val = temperature if temperature > 0 else None
top_p_val = top_p if 0 < top_p <= 1 else None
max_tokens_val = max_tokens if max_tokens > 0 else None
# Handle errors by returning updates for both outputs in a tuple
if not system_prompts_text:
return (gr.update(value="Error: Please enter or generate at least one system prompt/topic."), gr.update(value=None))
if num_turns <= 0:
return (gr.update(value="Error: Number of turns must be positive."), gr.update(value=None))
prompts = [p.strip() for p in system_prompts_text.strip().split('\n') if p.strip()]
if not prompts:
return (gr.update(value="Error: No valid prompts found in the input."), gr.update(value=None))
output_str = f"Generating {len(prompts)} conversations ({num_turns} turns each) using model '{model}'...\n"
output_str += f"(Settings: Temp={temp_val}, Top-P={top_p_val}, MaxTokens={max_tokens_val})\n"
output_str += "="*40 + "\n\n"
results_list_structured = []
for i, prompt in enumerate(prompts):
conversation_text = generate_synthetic_conversation(
prompt, model, num_turns, temperature=temp_val, top_p=top_p_val, max_tokens=max_tokens_val
)
output_str += f"--- Conversation {i+1}/{len(prompts)} ---\n"
output_str += conversation_text + "\n\n"
# --- Parsing Logic ---
core_conversation_text = conversation_text
if conversation_text.startswith("Error:"): core_conversation_text = None
elif "\n\n" in conversation_text:
parts = conversation_text.split("\n\n", 1)
core_conversation_text = parts[1] if len(parts) > 1 else conversation_text
if core_conversation_text:
messages = parse_conversation_string(core_conversation_text)
if messages: results_list_structured.append({"prompt": prompt, "messages": messages})
else: results_list_structured.append({"prompt": prompt, "error": "Failed to parse structure.", "raw_text": core_conversation_text})
elif conversation_text.startswith("Error:"): results_list_structured.append({"prompt": prompt, "error": conversation_text})
else: results_list_structured.append({"prompt": prompt, "error": "Could not extract content.", "raw_text": conversation_text})
# --- End Parsing Logic ---
output_str += "="*40 + "\nGeneration complete (check results above for errors)."
json_filepath = create_json_file(results_list_structured, "conversations.json")
# Return tuple of updates in the order of outputs list
return (gr.update(value=output_str), gr.update(value=json_filepath))
# --- Gradio Interface Definition ---
with gr.Blocks() as demo:
gr.Markdown("# Synthetic Data Generator using OpenRouter")
gr.Markdown(
"Generate synthetic text samples or conversations using various models"
)
# Removed the api_key_loaded check and warning Markdown
# Define model choices (can be shared or specific per tab)
# Consider fetching these dynamically from OpenRouter if possible in the future
model_choices = [
"deepseek/deepseek-chat-v3-0324:free", # Example free model
"meta-llama/llama-3.3-70b-instruct:free",
"deepseek/deepseek-r1:free",
"google/gemini-2.5-pro-exp-03-25:free",
"qwen/qwen-2.5-72b-instruct:free",
"featherless/qwerky-72b:free",
"google/gemma-3-27b-it:free",
"mistralai/mistral-small-24b-instruct-2501:free",
"deepseek/deepseek-r1-distill-llama-70b:free",
"sophosympatheia/rogue-rose-103b-v0.2:free",
"nvidia/llama-3.1-nemotron-70b-instruct:free",
"microsoft/phi-3-medium-128k-instruct:free",
"undi95/toppy-m-7b:free",
"huggingfaceh4/zephyr-7b-beta:free",
"openrouter/quasar-alpha"
# Add more model IDs as needed
]
default_model = model_choices[0] if model_choices else None
# --- Shared Model Settings ---
# Use an Accordion for less clutter
with gr.Accordion("Model Settings (Optional)", open=False):
# Set reasonable ranges and defaults. Use 0 for Max Tokens/Top-P to signify 'None'/API default.
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.1, label="Temperature", info="Controls randomness. Higher values are more creative, lower are more deterministic. 0 means use API default.")
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.0, step=0.05, label="Top-P (Nucleus Sampling)", info="Considers only tokens with cumulative probability mass >= top_p. 0 means use API default.")
max_tokens_slider = gr.Number(value=0, minimum=0, maximum=8192, step=64, label="Max Tokens", info="Maximum number of tokens to generate in the completion. 0 means use API default.")
with gr.Tabs():
with gr.TabItem("Text Generation"):
with gr.Row():
prompt_input_text = gr.Textbox(label="Prompt", placeholder="Enter your prompt here (e.g., Generate a short product description for a sci-fi gadget)", lines=3)
with gr.Row():
model_input_text = gr.Dropdown(
label="OpenRouter Model ID",
choices=model_choices,
value=default_model
)
num_samples_input_text = gr.Number(label="Number of Samples", value=3, minimum=1, maximum=20, step=1)
generate_button_text = gr.Button("Generate Text Samples")
output_text = gr.Textbox(label="Generated Samples", lines=15, show_copy_button=True)
# Add File component for download
download_file_text = gr.File(label="Download Samples as JSON")
generate_button_text.click(
fn=run_generation_and_prepare_json,
inputs=[
prompt_input_text, model_input_text, num_samples_input_text,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=[output_text, download_file_text]
)
with gr.TabItem("Conversation Generation"):
gr.Markdown("Enter one system prompt/topic per line below, or use the 'Generate Prompts' button.")
with gr.Row():
# Textbox for multiple prompts
prompt_input_conv = gr.Textbox(
label="Prompts (one per line)",
lines=5, # Make it multi-line
placeholder="Enter prompts here, one per line...\ne.g., Act as a pirate discussing treasure maps.\nDiscuss the future of space travel."
)
with gr.Row():
# Input for number of prompts to generate
num_prompts_input_conv = gr.Number(label="Number of Prompts to Generate", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
# Button to trigger AI prompt generation
generate_prompts_button = gr.Button("Generate Prompts using AI")
with gr.Row():
# Model selection for conversation generation AND prompt generation
model_input_conv = gr.Dropdown(
label="OpenRouter Model ID (for generation)",
choices=model_choices,
value=default_model
)
with gr.Row():
# Input for number of turns per conversation
num_turns_input_conv = gr.Number(label="Number of Turns per Conversation (approx)", value=5, minimum=1, maximum=20, step=1) # Keep max reasonable
# Button to generate the conversations based on the prompts in the Textbox
generate_conversations_button = gr.Button("Generate Conversations")
output_conv = gr.Textbox(label="Generated Conversations", lines=15, show_copy_button=True)
# Add File component for download
download_file_conv = gr.File(label="Download Conversations as JSON")
# Connect the "Generate Prompts" button to the UI wrapper
generate_prompts_button.click(
fn=generate_prompts_ui, # Use the wrapper that calls the real function
inputs=[
num_prompts_input_conv, model_input_conv,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=prompt_input_conv
)
# Connect the "Generate Conversations" button to the real function wrapper
generate_conversations_button.click(
fn=run_conversation_generation_and_prepare_json, # Use the wrapper that calls the real function
inputs=[
prompt_input_conv, model_input_conv, num_turns_input_conv,
temperature_slider, top_p_slider, max_tokens_slider # Add settings inputs
],
outputs=[output_conv, download_file_conv] # Output to both Textbox and File
)
# Launch the Gradio app
if __name__ == "__main__":
print("Launching Gradio App...")
print("Make sure the OPENROUTER_API_KEY environment variable is set.")
# Use share=True for temporary public link if running locally and need to test
demo.launch() # share=True |