Spaces:
Running
Running
import sys | |
from pathlib import Path | |
from ..utils.base_model import BaseModel | |
from .. import logger, MODEL_REPO_ID | |
liftfeat_path = Path(__file__).parent / "../../third_party/LiftFeat" | |
sys.path.append(str(liftfeat_path)) | |
from models.liftfeat_wrapper import LiftFeat | |
class Liftfeat(BaseModel): | |
default_conf = { | |
"keypoint_threshold": 0.05, | |
"max_keypoints": 5000, | |
"model_name": "LiftFeat.pth", | |
} | |
required_inputs = ["image"] | |
def _init(self, conf): | |
logger.info("Loading LiftFeat model...") | |
model_path = self._download_model( | |
repo_id=MODEL_REPO_ID, | |
filename="{}/{}".format(Path(__file__).stem, self.conf["model_name"]), | |
) | |
self.net = LiftFeat( | |
weight=model_path, | |
detect_threshold=self.conf["keypoint_threshold"], | |
top_k=self.conf["max_keypoints"], | |
) | |
logger.info("Loading LiftFeat model done!") | |
def _forward(self, data): | |
image = data["image"].cpu().numpy().squeeze() * 255 | |
image = image.transpose(1, 2, 0) | |
pred = self.net.extract(image) | |
keypoints = pred["keypoints"] | |
descriptors = pred["descriptors"] | |
scores = pred["scores"] | |
if self.conf["max_keypoints"] < len(keypoints): | |
idxs = scores.argsort()[-self.conf["max_keypoints"] or None :] | |
keypoints = keypoints[idxs, :2] | |
descriptors = descriptors[idxs] | |
scores = scores[idxs] | |
pred = { | |
"keypoints": keypoints[None], | |
"descriptors": descriptors[None].permute(0, 2, 1), | |
"scores": scores[None], | |
} | |
return pred | |