import gradio as gr from transformers import pipeline import os import pandas as pd import numpy as np import joblib import spacy from langchain_core.pydantic_v1 import BaseModel, Field from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate from langchain.output_parsers import PydanticOutputParser from langchain_openai import ChatOpenAI # Set up models for each app chat = ChatOpenAI() classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment") asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls") # --- Translator App --- class TextTranslator(BaseModel): output: str = Field(description="Python string containing the output text translated in the desired language") output_parser = PydanticOutputParser(pydantic_object=TextTranslator) format_instructions = output_parser.get_format_instructions() def text_translator(input_text : str, language : str) -> str: human_template = """Enter the text that you want to translate: {input_text}, and enter the language that you want it to translate to {language}. {format_instructions}""" human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) prompt = chat_prompt.format_prompt(input_text = input_text, language = language, format_instructions = format_instructions) messages = prompt.to_messages() response = chat(messages = messages) output = output_parser.parse(response.content) output_text = output.output return output_text # --- Sentiment Analysis App --- def sentiment_analysis(message, history): result = classifier(message) return f"Sentimiento : {result[0]['label']} (Probabilidad: {result[0]['score']:.2f})" # --- Financial Analyst App --- nlp = spacy.load('en_core_web_sm') nlp.add_pipe('sentencizer') def split_in_sentences(text): doc = nlp(text) return [str(sent).strip() for sent in doc.sents] def make_spans(text, results): results_list = [results[i]['label'] for i in range(len(results))] return list(zip(split_in_sentences(text), results_list)) def summarize_text(text): resp = summarizer(text) return resp[0]['summary_text'] def text_to_sentiment(text): sentiment = fin_model(text)[0]["label"] return sentiment def fin_ext(text): results = fin_model(split_in_sentences(text)) return make_spans(text, results) def fls(text): results = fls_model(split_in_sentences(text)) return make_spans(text, results) # --- Customer Churn App --- script_dir = os.path.dirname(os.path.abspath(__file__)) pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib') model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib') pipeline = joblib.load(pipeline_path) model = joblib.load(model_path) def calculate_total_charges(tenure, monthly_charges): return tenure * monthly_charges def predict(SeniorCitizen, Partner, Dependents, tenure, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges): TotalCharges = calculate_total_charges(tenure, MonthlyCharges) input_df = pd.DataFrame({ 'SeniorCitizen': [SeniorCitizen], 'Partner': [Partner], 'Dependents': [Dependents], 'tenure': [tenure], 'InternetService': [InternetService], 'OnlineSecurity': [OnlineSecurity], 'OnlineBackup': [OnlineBackup], 'DeviceProtection': [DeviceProtection], 'TechSupport': [TechSupport], 'StreamingTV': [StreamingTV], 'StreamingMovies': [StreamingMovies], 'Contract': [Contract], 'PaperlessBilling': [PaperlessBilling], 'PaymentMethod': [PaymentMethod], 'MonthlyCharges': [MonthlyCharges], 'TotalCharges': [TotalCharges] }) X_processed = pipeline.transform(input_df) cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object'] num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object'] cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'] cat_feature_names = cat_encoder.get_feature_names_out(cat_cols) feature_names = num_cols + list(cat_feature_names) final_df = pd.DataFrame(X_processed, columns=feature_names) final_df = pd.concat([final_df.iloc[:, 3:], final_df.iloc[:, :3]], axis=1) prediction_probs = model.predict_proba(final_df)[0] prediction_label = { "Prediction: CHURN 🔴": prediction_probs[1], "Prediction: STAY ✅": prediction_probs[0] } return prediction_label # --- Personal Information Detection App --- import gradio as gr gr.load("models/iiiorg/piiranha-v1-detect-personal-information").launch() # --- Gradio Interface --- with gr.Blocks() as demo: gr.Markdown("# All-in-One AI Apps") with gr.Tab("Text Translator"): gr.HTML("