Spaces:
Running
Running
Update churn_analysis.py
Browse files- churn_analysis.py +76 -0
churn_analysis.py
CHANGED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib, os
|
5 |
+
|
6 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib')
|
8 |
+
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib')
|
9 |
+
|
10 |
+
# Load transformation pipeline and model
|
11 |
+
pipeline = joblib.load(pipeline_path)
|
12 |
+
model = joblib.load(model_path)
|
13 |
+
|
14 |
+
# Create a function to calculate TotalCharges
|
15 |
+
def calculate_total_charges(tenure, monthly_charges):
|
16 |
+
return tenure * monthly_charges
|
17 |
+
|
18 |
+
# Create a function that applies the ML pipeline and makes predictions
|
19 |
+
def predict(SeniorCitizen, Partner, Dependents, tenure,
|
20 |
+
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
|
21 |
+
StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod,
|
22 |
+
MonthlyCharges):
|
23 |
+
|
24 |
+
# Calculate TotalCharges
|
25 |
+
TotalCharges = calculate_total_charges(tenure, MonthlyCharges)
|
26 |
+
|
27 |
+
# Create a dataframe with the input data
|
28 |
+
input_df = pd.DataFrame({
|
29 |
+
'SeniorCitizen': [SeniorCitizen],
|
30 |
+
'Partner': [Partner],
|
31 |
+
'Dependents': [Dependents],
|
32 |
+
'tenure': [tenure],
|
33 |
+
'InternetService': [InternetService],
|
34 |
+
'OnlineSecurity': [OnlineSecurity],
|
35 |
+
'OnlineBackup': [OnlineBackup],
|
36 |
+
'DeviceProtection': [DeviceProtection],
|
37 |
+
'TechSupport': [TechSupport],
|
38 |
+
'StreamingTV': [StreamingTV],
|
39 |
+
'StreamingMovies': [StreamingMovies],
|
40 |
+
'Contract': [Contract],
|
41 |
+
'PaperlessBilling': [PaperlessBilling],
|
42 |
+
'PaymentMethod': [PaymentMethod],
|
43 |
+
'MonthlyCharges': [MonthlyCharges],
|
44 |
+
'TotalCharges': [TotalCharges]
|
45 |
+
})
|
46 |
+
|
47 |
+
# Selecting categorical and numerical columns separately
|
48 |
+
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
49 |
+
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
50 |
+
|
51 |
+
X_processed = pipeline.transform(input_df)
|
52 |
+
|
53 |
+
# Extracting feature names for categorical columns after one-hot encoding
|
54 |
+
cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot']
|
55 |
+
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols)
|
56 |
+
|
57 |
+
# Concatenating numerical and categorical feature names
|
58 |
+
feature_names = num_cols + list(cat_feature_names)
|
59 |
+
|
60 |
+
# Convert X_processed to DataFrame
|
61 |
+
final_df = pd.DataFrame(X_processed, columns=feature_names)
|
62 |
+
|
63 |
+
# Extract the first three columns and remaining columns, then merge
|
64 |
+
first_three_columns = final_df.iloc[:, :3]
|
65 |
+
remaining_columns = final_df.iloc[:, 3:]
|
66 |
+
final_df = pd.concat([remaining_columns, first_three_columns], axis=1)
|
67 |
+
|
68 |
+
# Make predictions using the model
|
69 |
+
prediction_probs = model.predict_proba(final_df)[0]
|
70 |
+
prediction_label = {
|
71 |
+
"Prediction: CHURN 🔴": prediction_probs[1],
|
72 |
+
"Prediction: STAY ✅": prediction_probs[0]
|
73 |
+
}
|
74 |
+
|
75 |
+
return prediction_label
|
76 |
+
|