Spaces:
Running
Running
import gradio as gr | |
from pydantic import BaseModel, Field | |
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_openai import ChatOpenAI | |
chat = ChatOpenAI() | |
# Define the Pydantic Model (updated for Pydantic v2) | |
class TextTranslator(BaseModel): | |
output: str = Field(description="Python string containing the output text translated in the desired language") | |
# Use PydanticOutputParser (no need for response_schemas) | |
output_parser = PydanticOutputParser(pydantic_object=TextTranslator) | |
def text_translator(input_text: str, language: str) -> str: | |
human_template = """Enter the text that you want to translate: | |
{input_text}, and enter the language that you want it to translate to {language}.""" | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) | |
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) | |
prompt = chat_prompt.format_prompt(input_text=input_text, language=language) | |
messages = prompt.to_messages() | |
response = chat(messages=messages) | |
# Use output_parser to parse the response | |
output = output_parser.parse(response.content) | |
return output.output | |
def text_translator_ui(): | |
gr.Markdown("### Text Translator\nTranslate text into any language using AI.") | |
input_text = gr.Textbox(label="Enter the text that you want to translate") | |
input_lang = gr.Textbox(label="Enter the language that you want it to translate to", placeholder="Example: Hindi, French, Bengali, etc.") | |
output_text = gr.Textbox(label="Translated text") | |
translate_button = gr.Button("Translate") | |
translate_button.click(fn=text_translator, inputs=[input_text, input_lang], outputs=output_text) |