test2 / translator.py
Rawiwan1912's picture
Update translator.py
66cca75 verified
import gradio as gr
from pydantic import BaseModel, Field
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_openai import ChatOpenAI
chat = ChatOpenAI()
# Define the Pydantic Model (updated for Pydantic v2)
class TextTranslator(BaseModel):
output: str = Field(description="Python string containing the output text translated in the desired language")
# Use PydanticOutputParser (no need for response_schemas)
output_parser = PydanticOutputParser(pydantic_object=TextTranslator)
def text_translator(input_text: str, language: str) -> str:
human_template = """Enter the text that you want to translate:
{input_text}, and enter the language that you want it to translate to {language}."""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
prompt = chat_prompt.format_prompt(input_text=input_text, language=language)
messages = prompt.to_messages()
response = chat(messages=messages)
# Use output_parser to parse the response
output = output_parser.parse(response.content)
return output.output
def text_translator_ui():
gr.Markdown("### Text Translator\nTranslate text into any language using AI.")
input_text = gr.Textbox(label="Enter the text that you want to translate")
input_lang = gr.Textbox(label="Enter the language that you want it to translate to", placeholder="Example: Hindi, French, Bengali, etc.")
output_text = gr.Textbox(label="Translated text")
translate_button = gr.Button("Translate")
translate_button.click(fn=text_translator, inputs=[input_text, input_lang], outputs=output_text)