File size: 1,940 Bytes
36b054b
2a72ef1
 
564fde3
3c76263
 
c68f7bf
 
564fde3
db19c65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
from churn_analysis import predict
from translator import text_translator_ui

with gr.Blocks() as app:
    with gr.Tab("Text Translator"):
        text_translator_ui()


    # Add the Churn Analysis Tab
    with gr.Tab("Churn Analysis"):
        gr.Markdown("Customer Churn Prediction")
        
        # Define your inputs for churn prediction
        with gr.Row():
            input_interface = [
                gr.Radio(['Yes', 'No'], label="Are you a Senior Citizen?"),
                gr.Radio(['Yes', 'No'], label="Do you have a Partner?"),
                gr.Radio(['No', 'Yes'], label="Do you have Dependents?"),
                gr.Slider(minimum=1, maximum=73, step=1, label="Tenure (in months)"),
                gr.Radio(['DSL', 'Fiber optic', 'No Internet'], label="Internet Service"),
                gr.Radio(['No', 'Yes'], label="Do you have Online Security?"),
                gr.Radio(['No', 'Yes'], label="Do you have Online Backup?"),
                gr.Radio(['No', 'Yes'], label="Do you have Device Protection?"),
                gr.Radio(['No', 'Yes'], label="Do you have Tech Support?"),
                gr.Radio(['No', 'Yes'], label="Do you have Streaming TV?"),
                gr.Radio(['No', 'Yes'], label="Do you have Streaming Movies?"),
                gr.Radio(['Month-to-month', 'One year', 'Two year'], label="Contract Type"),
                gr.Radio(['Yes', 'No'], label="Paperless Billing?"),
                gr.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label="Payment Method"),
                gr.Slider(minimum=18.40, maximum=118.65, label="Monthly Charges")
            ]
        
        output_interface = gr.Label(label="Churn Prediction")
        
        predict_btn = gr.Button('Predict Churn')
        predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
        
app.launch(share=True)