import spaces import gradio import json import torch import onnxruntime from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer from optimum.pipelines import pipeline from fastapi import FastAPI from fastapi.middleware.cors import CORSMiddleware # CORS Config app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win","https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win","https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win","https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win","https://lord-raven.github.io"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) print(f"Is CUDA available: {torch.cuda.is_available()}") print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") # "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere # "xenova/deberta-v3-base-tasksource-nli" Not impressed # "Xenova/bart-large-mnli" A bit slow # "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay # model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0" # file_name = "onnx/model.onnx" # tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0" # model = ORTModelForSequenceClassification.from_pretrained(model_name, export=True, provider="CUDAExecutionProvider") # tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512) session_options = onnxruntime.SessionOptions() session_options.log_severity_level = 0 print(f"ORTModelForSequenceClassification.from_pretrained") model = ORTModelForSequenceClassification.from_pretrained( "philschmid/tiny-bert-sst2-distilled", export=True, provider="CUDAExecutionProvider", session_options=session_options ) print(f"AutoTokenizer.from_pretrained") tokenizer = AutoTokenizer.from_pretrained("philschmid/tiny-bert-sst2-distilled") # classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0") print(f"Testing 1") @spaces.GPU() def classify(data_string, request: gradio.Request): if request: if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win", "https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win", "https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win", "https://ravenok-statosphere-backend.hf.space", "https://lord-raven.github.io"]: return "{}" data = json.loads(data_string) # if 'task' in data and data['task'] == 'few_shot_classification': # return few_shot_classification(data) # else: return zero_shot_classification(data) print(f"Testing 2") def zero_shot_classification(data): results = [] # classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label']) response_string = json.dumps(results) return response_string def create_sequences(data): # return ['###Given:\n' + data['sequence'] + '\n###End Given\n###Hypothesis:\n' + data['hypothesis_template'].format(label) + "\n###End Hypothesis" for label in data['candidate_labels']] return [data['sequence'] + '\n' + data['hypothesis_template'].format(label) for label in data['candidate_labels']] print(f"Testing 3") # def few_shot_classification(data): # sequences = create_sequences(data) # print(sequences) # # results = onnx_few_shot_model(sequences) # probs = onnx_few_shot_model.predict_proba(sequences) # scores = [true[0] for true in probs] # composite = list(zip(scores, data['candidate_labels'])) # composite = sorted(composite, key=lambda x: x[0], reverse=True) # labels, scores = zip(*composite) # response_dict = {'scores': scores, 'labels': labels} # print(response_dict) # response_string = json.dumps(response_dict) # return response_string print(f"Testing 4") gradio_interface = gradio.Interface( fn = classify, inputs = gradio.Textbox(label="JSON Input"), outputs = gradio.Textbox() ) print(f"Testing 5") gradio_interface.launch()