Lord-Raven commited on
Commit
c44bdaf
·
1 Parent(s): 39080c2

Experimenting with few-shot classification.

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -60,20 +60,20 @@ class OnnxSetFitModel:
60
  # "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
61
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
62
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
63
- model_name = "Xenova/deBERTa-v3-base-mnli"
64
- file_name = "onnx/model_quantized.onnx"
65
- tokenizer_name = "MoritzLaurer/DeBERTa-v3-base-mnli"
66
  model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name)
67
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
68
  classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer)
69
 
70
- few_shot_tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-small-en-v1.5', model_max_length=512)
71
- ort_model = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-small-en-v1.5', file_name="onnx/model.onnx")
72
- few_shot_model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5_setfit-sst2-english")
73
 
74
  # Train few_shot_model
75
  candidate_labels = ["correct", "wrong"]
76
- reference_dataset = load_dataset("emotion")
77
  dummy_dataset = Dataset.from_dict({})
78
  train_dataset = get_templated_dataset(dummy_dataset, candidate_labels=candidate_labels, sample_size=8, template="This conclusion is {}.")
79
  args = TrainingArguments(
 
60
  # "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
61
  # "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
62
  # "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
63
+ model_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
64
+ file_name = "onnx/model.onnx"
65
+ tokenizer_name = "MoritzLaurer/bge-m3-zeroshot-v2.0"
66
  model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name)
67
  tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
68
  classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer)
69
 
70
+ few_shot_tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-m3', model_max_length=512) # 'BAAI/bge-small-en-v1.5'
71
+ ort_model = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-m3', file_name="onnx/model.onnx") # 'BAAI/bge-small-en-v1.5'
72
+ few_shot_model = SetFitModel.from_pretrained("BAAI/bge-m3") # "moshew/bge-small-en-v1.5_setfit-sst2-english"
73
 
74
  # Train few_shot_model
75
  candidate_labels = ["correct", "wrong"]
76
+ reference_dataset = load_dataset("SetFit/sst2")
77
  dummy_dataset = Dataset.from_dict({})
78
  train_dataset = get_templated_dataset(dummy_dataset, candidate_labels=candidate_labels, sample_size=8, template="This conclusion is {}.")
79
  args = TrainingArguments(