Lord-Raven commited on
Commit
46a3862
·
1 Parent(s): 79a1b2c

Experimenting with few-shot classification.

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -71,7 +71,7 @@ ort_model = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-small-en-v1.5
71
  few_shot_model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5_setfit-sst2-english")
72
 
73
  # Train few_shot_model
74
- candidate_labels = ["supported", "refuted"]
75
  reference_dataset = load_dataset("emotion")
76
  dummy_dataset = Dataset.from_dict({})
77
  train_dataset = get_templated_dataset(dummy_dataset, candidate_labels=candidate_labels, sample_size=8, template="Based on the Given passage, the hypothesis is {}.")
@@ -110,16 +110,14 @@ def zero_shot_classification(data):
110
  return response_string
111
 
112
  def create_sequences(data):
113
- return ['###Given:\n' + data['sequence'] + '\n###End Given\n###Hypothesis:\n' + data['hypothesis_template'].format(label) + "\n###End Hypothesis" + "\nBased on the Given passage, the Hypothesis is {}" for label in data['candidate_labels']]
114
 
115
  def few_shot_classification(data):
116
  sequences = create_sequences(data)
117
  print(sequences)
118
- results = onnx_few_shot_model(sequences)
119
  probs = onnx_few_shot_model.predict_proba(sequences)
120
- print(results)
121
- print(probs)
122
- response_string = json.dumps(results.tolist())
123
  return response_string
124
 
125
  gradio_interface = gradio.Interface(
 
71
  few_shot_model = SetFitModel.from_pretrained("moshew/bge-small-en-v1.5_setfit-sst2-english")
72
 
73
  # Train few_shot_model
74
+ candidate_labels = ["true", "false"]
75
  reference_dataset = load_dataset("emotion")
76
  dummy_dataset = Dataset.from_dict({})
77
  train_dataset = get_templated_dataset(dummy_dataset, candidate_labels=candidate_labels, sample_size=8, template="Based on the Given passage, the hypothesis is {}.")
 
110
  return response_string
111
 
112
  def create_sequences(data):
113
+ return ['###Given:\n' + data['sequence'] + '\n###End Given\n###Hypothesis:\n' + data['hypothesis_template'].format(label) + "\n###End Hypothesis" for label in data['candidate_labels']]
114
 
115
  def few_shot_classification(data):
116
  sequences = create_sequences(data)
117
  print(sequences)
118
+ # results = onnx_few_shot_model(sequences)
119
  probs = onnx_few_shot_model.predict_proba(sequences)
120
+ response_string = json.dumps(probs.tolist())
 
 
121
  return response_string
122
 
123
  gradio_interface = gradio.Interface(