Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio | |
import json | |
import onnxruntime | |
import time | |
from datetime import datetime | |
from transformers import pipeline | |
from fastapi import FastAPI | |
from fastapi.middleware.cors import CORSMiddleware | |
# CORS Config - This isn't actually working; instead, I am taking a gross approach to origin whitelisting within the service. | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win","https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win","https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win","https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
print(f"Is CUDA available: {torch.cuda.is_available()}") | |
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}") | |
# "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere | |
model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0" | |
tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0" | |
classifier_cpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name) | |
classifier_gpu = pipeline(task="zero-shot-classification", model=model_name, tokenizer=tokenizer_name, device="cuda:0") | |
def classify(data_string, request: gradio.Request): | |
if request: | |
if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win", "https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win", "https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win", "https://ravenok-statosphere-backend.hf.space", "https://lord-raven.github.io"]: | |
return "{}" | |
data = json.loads(data_string) | |
# Try to prevent batch suggestion warning in log. | |
classifier_cpu.call_count = 0 | |
classifier_gpu.call_count = 0 | |
start_time = time.time() | |
result = {} | |
try: | |
if 'cpu' not in data: | |
result = zero_shot_classification_gpu(data) | |
print(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - GPU Classification took {time.time() - start_time}.") | |
except Exception as e: | |
print(f"GPU classification failed: {e}\nFall back to CPU.") | |
if not result: | |
result = zero_shot_classification_cpu(data) | |
print(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - CPU Classification took {time.time() - start_time}.") | |
return json.dumps(result) | |
def zero_shot_classification_cpu(data): | |
return classifier_cpu(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label']) | |
def zero_shot_classification_gpu(data): | |
return classifier_gpu(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label']) | |
def create_sequences(data): | |
return [data['sequence'] + '\n' + data['hypothesis_template'].format(label) for label in data['candidate_labels']] | |
gradio_interface = gradio.Interface( | |
fn = classify, | |
inputs = gradio.Textbox(label="JSON Input"), | |
outputs = gradio.Textbox(label="JSON Output"), | |
title = "Statosphere Backend", | |
description = "This Space is a classification service for a set of chub.ai stages and not really intended for use through this UI." | |
) | |
app.mount("/gradio", gradio_interface) | |
gradio_interface.launch() | |