Spaces:
Running
on
Zero
Running
on
Zero
import gradio | |
import json | |
from transformers import pipeline | |
from transformers import AutoTokenizer | |
def zero_shot_classification(data_string): | |
print(data_string) | |
data = json.loads(data_string) | |
print(data) | |
classifier = pipeline(task='zero-shot-classification', tokenizer=AutoTokenizer.from_pretrained('sileod/deberta-v3-base-tasksource-nli'), model='sileod/deberta-v3-base-tasksource-nli') | |
results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label']) | |
return {results} | |
gradio_interface = gradio.Interface( | |
fn = zero_shot_classification, | |
inputs = gradio.Textbox(label="JSON Input"), | |
outputs = "json" | |
) | |
gradio_interface.launch() |