File size: 1,860 Bytes
93643d5
040c521
b0d2a02
e83c60c
3554a8b
bd9482b
b0d2a02
dc02763
6c40a85
dc02763
cfd4b0d
f4c9eb8
 
fd25b82
f4c9eb8
 
fd25b82
b0d2a02
8a243e5
 
 
 
b0d2a02
a822923
 
 
f3bcef9
 
fd25b82
47a0109
daac94f
9704577
0686401
 
5071704
93643d5
 
daac94f
0686401
93643d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import gradio
import json
import torch
from transformers import AutoTokenizer
from transformers import pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification

# "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small
# "xenova/deberta-v3-base-tasksource-nli" Not impressed
# "Xenova/bart-large-mnli" A bit slow
# "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
# "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
model_name = "MoritzLaurer/deberta-v3-large-zeroshot-v2.0"
file_name = "onnx/model_quantized.onnx"
tokenizer_name = model_name
model = ORTModelForSequenceClassification.from_pretrained(model_name) #, file_name=file_name)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)

# file = cached_download("https://huggingface.co/" + model_name + "")
# sess = InferenceSession(file)

classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer)

def zero_shot_classification(data_string, request: gradio.Request):
    if request:
        print("Request headers dictionary:", request.headers)
        if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://jhuhman-statosphere-backend.hf.space"]:
            return "{}"
    print(data_string)
    data = json.loads(data_string)
    print(data)
    results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
    response_string = json.dumps(results)
    return response_string

gradio_interface = gradio.Interface(
    fn = zero_shot_classification,
    inputs = gradio.Textbox(label="JSON Input"),
    outputs = gradio.Textbox()
)
gradio_interface.launch()