File size: 742 Bytes
93643d5
040c521
d04fba3
e83c60c
d04fba3
47a0109
daac94f
47a0109
daac94f
e83c60c
d04fba3
e83c60c
d04fba3
5071704
93643d5
 
daac94f
d04fba3
93643d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import gradio
import json
from transformers import pipeline
from transformers import AutoTokenizer

def zero_shot_classification(data_string):
    print(data_string)
    data = json.loads(data_string)
    print(data)
    classifier = pipeline(task='zero-shot-classification', tokenizer=AutoTokenizer.from_pretrained('Xenova/mobilebert-uncased-mnli'), model='Xenova/mobilebert-uncased-mnli')

    results = classifier(data.sequence, candidate_labels=data.candidate_labels) #, hypothesis_template=data.hypothesis_template, multi_label=data.multi_label)
    return {results}

gradio_interface = gradio.Interface(
    fn = zero_shot_classification,
    inputs = gradio.Textbox(label="JSON Input"),
    outputs = "json"
)
gradio_interface.launch()