File size: 989 Bytes
93643d5
040c521
d04fba3
e83c60c
6b9e813
d04fba3
7badb14
6cf159b
6b9e813
 
bbe0398
6b9e813
 
 
 
 
47a0109
daac94f
47a0109
daac94f
9704577
0686401
 
5071704
93643d5
 
daac94f
0686401
93643d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio
import json
from transformers import pipeline
from transformers import AutoTokenizer
from fastapi.middleware.cors import CORSMiddleware

classifier = pipeline(task='zero-shot-classification', model='tasksource/deberta-small-long-nli', device=0)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win"],
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"],
)

def zero_shot_classification(data_string):
    print(data_string)
    data = json.loads(data_string)
    print(data)
    results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
    response_string = json.dumps(results)
    return response_string

gradio_interface = gradio.Interface(
    fn = zero_shot_classification,
    inputs = gradio.Textbox(label="JSON Input"),
    outputs = gradio.Textbox()
)
gradio_interface.launch()