Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,087 Bytes
70b5e18 93643d5 040c521 b0d2a02 e83c60c 3554a8b bd9482b fd79eb2 1602927 fd79eb2 b0d2a02 1602927 30d670a 6c40a85 dc02763 cfd4b0d f4c9eb8 39080c2 442d668 1f33968 2bf9da4 50b814c a822923 1602927 f3bcef9 47a0109 0974f51 50b814c 2bf9da4 50b814c 9704577 0686401 5071704 8ec85f2 cdb9220 d2e06fa 8ec85f2 0974f51 fb2ea03 0974f51 fb2ea03 0974f51 fb2ea03 0974f51 50b814c 93643d5 50b814c daac94f 0686401 93643d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import spaces
import gradio
import json
import torch
from transformers import AutoTokenizer
from transformers import pipeline
from optimum.onnxruntime import ORTModelForSequenceClassification
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
# CORS Config
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win","https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win","https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win","https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win","https://lord-raven.github.io"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# "xenova/mobilebert-uncased-mnli" "typeform/mobilebert-uncased-mnli" Fast but small--same as bundled in Statosphere
# "xenova/deberta-v3-base-tasksource-nli" Not impressed
# "Xenova/bart-large-mnli" A bit slow
# "Xenova/distilbert-base-uncased-mnli" "typeform/distilbert-base-uncased-mnli" Bad answers
# "Xenova/deBERTa-v3-base-mnli" "MoritzLaurer/DeBERTa-v3-base-mnli" Still a bit slow and not great answers
# "xenova/nli-deberta-v3-small" "cross-encoder/nli-deberta-v3-small" Was using this for a good while and it was...okay
# model_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
# file_name = "onnx/model.onnx"
# tokenizer_name = "MoritzLaurer/deberta-v3-base-zeroshot-v2.0"
# model = ORTModelForSequenceClassification.from_pretrained(model_name, file_name=file_name, provider="CUDAExecutionProvider")
# tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, model_max_length=512)
model = ORTModelForSequenceClassification.from_pretrained(
"philschmid/tiny-bert-sst2-distilled",
export=True,
provider="CUDAExecutionProvider",
)
tokenizer = AutoTokenizer.from_pretrained("philschmid/tiny-bert-sst2-distilled")
classifier = pipeline(task="zero-shot-classification", model=model, tokenizer=tokenizer, device="cuda:0")
def classify(data_string, request: gradio.Request):
if request:
if request.headers["origin"] not in ["https://statosphere-3704059fdd7e.c5v4v4jx6pq5.win", "https://crunchatize-77a78ffcc6a6.c5v4v4jx6pq5.win", "https://crunchatize-2-2b4f5b1479a6.c5v4v4jx6pq5.win", "https://tamabotchi-2dba63df3bf1.c5v4v4jx6pq5.win", "https://ravenok-statosphere-backend.hf.space", "https://lord-raven.github.io"]:
return "{}"
data = json.loads(data_string)
# if 'task' in data and data['task'] == 'few_shot_classification':
# return few_shot_classification(data)
# else:
return zero_shot_classification(data)
@spaces.GPU
def zero_shot_classification(data):
results = classifier(data['sequence'], candidate_labels=data['candidate_labels'], hypothesis_template=data['hypothesis_template'], multi_label=data['multi_label'])
response_string = json.dumps(results)
return response_string
def create_sequences(data):
# return ['###Given:\n' + data['sequence'] + '\n###End Given\n###Hypothesis:\n' + data['hypothesis_template'].format(label) + "\n###End Hypothesis" for label in data['candidate_labels']]
return [data['sequence'] + '\n' + data['hypothesis_template'].format(label) for label in data['candidate_labels']]
# def few_shot_classification(data):
# sequences = create_sequences(data)
# print(sequences)
# # results = onnx_few_shot_model(sequences)
# probs = onnx_few_shot_model.predict_proba(sequences)
# scores = [true[0] for true in probs]
# composite = list(zip(scores, data['candidate_labels']))
# composite = sorted(composite, key=lambda x: x[0], reverse=True)
# labels, scores = zip(*composite)
# response_dict = {'scores': scores, 'labels': labels}
# print(response_dict)
# response_string = json.dumps(response_dict)
# return response_string
gradio_interface = gradio.Interface(
fn = classify,
inputs = gradio.Textbox(label="JSON Input"),
outputs = gradio.Textbox()
)
gradio_interface.launch() |