Raumkommander commited on
Commit
0cef02f
·
1 Parent(s): 9df1739

inital deployment1

Browse files
Files changed (1) hide show
  1. app.py +40 -9
app.py CHANGED
@@ -2,6 +2,38 @@ import torch
2
  import gradio as gr
3
  from diffusers import StableDiffusionPipeline, LCMScheduler
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  # Load the pre-trained Real-Time LCM model
6
  model_id = "SimianLuo/LCM_Dreamshaper_v7"
7
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
@@ -13,14 +45,13 @@ def generate_image(prompt: str):
13
  image = pipe(prompt, num_inference_steps=4).images[0]
14
  return image
15
 
16
- # Create Gradio interface
17
- iface = gr.Interface(
18
- fn=generate_image,
19
- inputs=gr.Textbox(label="Enter a prompt"),
20
- outputs=gr.Image(label="Generated Image"),
21
- title="Real-Time LCM Image Generator",
22
- description="Enter a prompt and get an AI-generated image in real time using Latent Consistency Models."
23
- )
24
-
25
  if __name__ == "__main__":
26
  iface.launch()
 
 
 
 
 
 
 
 
 
2
  import gradio as gr
3
  from diffusers import StableDiffusionPipeline, LCMScheduler
4
 
5
+
6
+ import gradio as gr
7
+ import cv2
8
+ import numpy as np
9
+
10
+ # Function to process the video frame
11
+ def process_frame(frame):
12
+ # Convert frame to grayscale (example processing step)
13
+ gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
14
+ return gray_frame
15
+
16
+ # Function to capture video feed
17
+ def video_stream():
18
+ cap = cv2.VideoCapture(0) # Open webcam
19
+ while True:
20
+ ret, frame = cap.read()
21
+ if not ret:
22
+ break
23
+ processed_frame = process_frame(frame) # Apply processing
24
+ yield processed_frame # Return processed frame
25
+ cap.release()
26
+
27
+ # Create the Gradio interface
28
+ iface = gr.Interface(
29
+ fn=video_stream,
30
+ inputs=[],
31
+ outputs=gr.Video(label="Webcam Feed"),
32
+ live=True
33
+ )
34
+
35
+
36
+
37
  # Load the pre-trained Real-Time LCM model
38
  model_id = "SimianLuo/LCM_Dreamshaper_v7"
39
  pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
 
45
  image = pipe(prompt, num_inference_steps=4).images[0]
46
  return image
47
 
 
 
 
 
 
 
 
 
 
48
  if __name__ == "__main__":
49
  iface.launch()
50
+
51
+
52
+
53
+
54
+ # Launch the Gradio app
55
+ if __name__ == "__main__":
56
+ iface.launch(share=True)
57
+