File size: 9,380 Bytes
89bed1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137c7fb
 
1a8fee9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import pandas as pd
import re
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import Counter
import emoji
import numpy as np
import seaborn as sns

def preprocess_data(chat_data):
    date_time_pattern = r'\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s[APap][mM]\s-\s'
    messages = re.split(date_time_pattern, chat_data)[1:]
    date_times = re.findall(date_time_pattern, chat_data)
    df = pd.DataFrame({'date_time': date_times, 'message': messages})
    df['date_time'] = df['date_time'].str.replace('\u202f', ' ')
    df['date_time'] = pd.to_datetime(df['date_time'], format='%m/%d/%y, %I:%M %p - ')
    #separate users and their corresponding messages
    users = []
    messages = []
    for message in df['message']:
        entry = re.split('([\w\W]+?):\s', message)
        if len(entry) > 1:
            users.append(entry[1])
            messages.append(entry[2])
        else:
            users.append('group_notification')
            messages.append(entry[0])
    df['user'] = users
    df['message'] = messages
    # extract date month year hour and minute from date_time
    df['date'] = df['date_time'].dt.date
    df['time'] = df['date_time'].dt.time
    df['hour'] = df['date_time'].dt.hour
    df['minute'] = df['date_time'].dt.minute
    df['day'] = df['date_time'].dt.day
    df['month'] = df['date_time'].dt.month
    df['year'] = df['date_time'].dt.year
    df['weekday'] = df['date_time'].dt.weekday
    df['weekday_en'] = df['weekday'].map({0: 'Mon', 1: 'Tue', 2: 'Wed', 3: 'Thu', 4: 'Fri', 5: 'Sat', 6: 'Sun'})
    df['month_en'] = df['month'].map({1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'})
    # df['only_date'] = df['date_time'].dt.date
    df.sample(20)
    return df


def fetch_stats(selected_user, df):
    if selected_user == 'All':
        user_df = df
    else:
        user_df = df[df['user'] == selected_user]
    total_messages = user_df.shape[0]
    media_messages = user_df[user_df['message'] == '<Media omitted>\n']
    media_messages = media_messages.shape[0]
    links = user_df[user_df['message'].str.contains('http')]
    print(links)
    links = links.shape[0]
    emojis = user_df[user_df['message'].str.contains('[\U0001F600-\U0001F650]')].shape[0]
    words = user_df['message'].apply(lambda x: len(x.split()))
    total_words = words.sum()
    return user_df, total_messages, media_messages, links, emojis, total_words

def busiest_users(df):
    user_message_counts = df['user'].value_counts().reset_index()
    user_message_counts.columns = ['user', 'message_count']
    user_message_counts['percentage'] = (user_message_counts['message_count'] / user_message_counts['message_count'].sum()) * 100
    user_message_counts['percentage'] = user_message_counts['percentage'].round(2)
    user_message_counts = user_message_counts.sort_values(by='message_count', ascending=False)
    busiest_users = user_message_counts
    plt.bar(busiest_users.user, busiest_users.message_count)
    plt.xticks(rotation=45)
    plt.title('Busiest users')
    plt.xlabel('Users')
    plt.ylabel('Total messages')
    return busiest_users, plt

def word_cloud(df, selected_user):
    if selected_user == 'All':
        user_df = df
    else:
        user_df = df[df['user'] == selected_user]

    f = open('stop_hinglish.txt','r')
    stop_words = f.read()

    temp = user_df[user_df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']
    temp = temp[temp['message'] != 'This message was deleted\n']
    temp = temp[temp['message'] != 'You deleted this message\n']

    words = []
    for message in temp['message']:
        for word in message.lower().split():
            if word not in stop_words:
                words.append(word)
    words = ' '.join(words)

    wordcloud = WordCloud(width=800, height=400, random_state=21, max_font_size=110, background_color='white')
    wordcloud = wordcloud.generate(words)
    plt.figure(figsize=(20, 10))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis('off')
    return plt

def most_common_words(selected_user, df):
    f = open('stop_hinglish.txt','r')
    stop_words = f.read()

    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    temp = df[df['user'] != 'group_notification']
    temp = temp[temp['message'] != '<Media omitted>\n']
    temp = temp[temp['message'] != 'This message was deleted\n']
    temp = temp[temp['message'] != 'You deleted this message\n']

    words = []
    for message in temp['message']:
        for word in message.lower().split():
            if word not in stop_words:
                words.append(word)

    most_common_df = pd.DataFrame(Counter(words).most_common(50))
    most_common_df.columns = ['word', 'word_count']
    fig, ax = plt.subplots(figsize=(10, 15))
    ax.barh(most_common_df.word, most_common_df.word_count, height=0.8)
    ax.set_xlabel('Word count')
    ax.set_ylabel('Words')
    ax.set_title('Most common words')
    return most_common_df, fig

def most_common_emojis(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]
    emojis = []
    for message in df['message']:
        emojis.extend([c for c in message if c in emoji.EMOJI_DATA])

    emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
    emoji_df.columns = ['emoji', 'emoji_count']
    return emoji_df

def monthly_timeline(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    monthly_timeline = df.groupby(['year', 'month_en']).count()['message'].reset_index()
    monthly_timeline['month_year'] = monthly_timeline['month_en'] + ' ' + monthly_timeline['year'].astype(str)

    fig, ax = plt.subplots(figsize=(10, 5))
    ax.plot(monthly_timeline['month_year'], monthly_timeline['message'])
    ax.set_title('Messages sent over Months')
    ax.set_xlabel('Month-Year')
    ax.set_ylabel('Total messages')
    return monthly_timeline, fig

def daily_timeline(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    daily_timeline = df.groupby('date').count()['message'].reset_index()
    daily_timeline.columns = ['date', 'message_count']

    fig, ax = plt.subplots(figsize=(10, 5))
    ax.plot(daily_timeline['date'], daily_timeline['message_count'])
    ax.set_title('Messages sent over time')
    ax.set_xlabel('Date')
    ax.set_ylabel('Total messages')
    return daily_timeline, fig

def weekday_activity_map(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    week_df = df['weekday_en'].value_counts().reset_index()
    week_df.columns = ['weekday', 'message_count']
    fig, ax = plt.subplots(figsize=(10, 5))
    ax.bar(week_df['weekday'], week_df['message_count'])
    ax.set_title('Messages sent per weekday')
    ax.set_xlabel('Weekday')
    ax.set_ylabel('Total messages')
    return None, fig

def month_activity_map(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    month_df = df['month_en'].value_counts().reset_index()
    month_df.columns = ['month', 'message_count']
    fig, ax = plt.subplots(figsize=(10, 5))
    ax.bar(month_df['month'], month_df['message_count'])
    ax.set_title('Messages sent per month')
    ax.set_xlabel('Month')
    ax.set_ylabel('Total messages')

    return month_df, fig

def hour_activity_map(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]

    # Count the number of messages per hour
    hour_counts = df['hour'].value_counts().sort_index()
    # Convert hours to radians
    hours = np.arange(24)
    radians = 2 * np.pi * (hours / 24)

    # Create a polar plot
    fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={'projection': 'polar'})
    ax.bar(radians, hour_counts, width=0.3, bottom=0.2)
    ax.set_theta_direction(-1)  # Clockwise
    ax.set_theta_offset(np.pi / 2.0)  # Start from top
    ax.set_xticks(radians)
    ax.set_xticklabels(hours)
    ax.set_yticklabels([])
    ax.set_title('Busiest Hours of the Day', va='bottom')

    return hour_counts, fig

def activity_heatmap(selected_user, df):
    if selected_user != 'All':
        df = df[df['user'] == selected_user]
    
    heatmap_data = df.pivot_table(index='weekday_en', columns='hour', values='message', aggfunc='count', fill_value=0)
    plt.figure(figsize=(10, 6))
    sns.heatmap(heatmap_data, cmap='gray_r', linewidths=.5, fmt='d')
    plt.title('Activity Heatmap')
    plt.xlabel('Hour of Day')
    plt.ylabel('Day of Week')
    return plt


def extract_links(df):
    links = df[df['message'].str.contains('http', na=False)]
    links = links['message'].str.extractall(r'(https?://\S+)')[0]
    return links.reset_index(drop=True)

def plot_common_domains(df):
    links = extract_links(df)
    domains = links.str.extract(r'https?://(?:www\.)?([^/]+)')[0]
    domain_counts = domains.value_counts().reset_index()
    domain_counts.columns = ['domain', 'count']
    
    fig, ax = plt.subplots(figsize=(15, 5))
    ax.bar(domain_counts['domain'], domain_counts['count'], width=0.5)
    plt.xticks(rotation='vertical')
    ax.set_title('Most Common Domains')
    ax.set_xlabel('Domain')
    ax.set_ylabel('Count')
    return domain_counts, fig