Spaces:
Sleeping
Sleeping
File size: 9,380 Bytes
89bed1b 137c7fb 1a8fee9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import pandas as pd
import re
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import Counter
import emoji
import numpy as np
import seaborn as sns
def preprocess_data(chat_data):
date_time_pattern = r'\d{1,2}/\d{1,2}/\d{2,4},\s\d{1,2}:\d{2}\s[APap][mM]\s-\s'
messages = re.split(date_time_pattern, chat_data)[1:]
date_times = re.findall(date_time_pattern, chat_data)
df = pd.DataFrame({'date_time': date_times, 'message': messages})
df['date_time'] = df['date_time'].str.replace('\u202f', ' ')
df['date_time'] = pd.to_datetime(df['date_time'], format='%m/%d/%y, %I:%M %p - ')
#separate users and their corresponding messages
users = []
messages = []
for message in df['message']:
entry = re.split('([\w\W]+?):\s', message)
if len(entry) > 1:
users.append(entry[1])
messages.append(entry[2])
else:
users.append('group_notification')
messages.append(entry[0])
df['user'] = users
df['message'] = messages
# extract date month year hour and minute from date_time
df['date'] = df['date_time'].dt.date
df['time'] = df['date_time'].dt.time
df['hour'] = df['date_time'].dt.hour
df['minute'] = df['date_time'].dt.minute
df['day'] = df['date_time'].dt.day
df['month'] = df['date_time'].dt.month
df['year'] = df['date_time'].dt.year
df['weekday'] = df['date_time'].dt.weekday
df['weekday_en'] = df['weekday'].map({0: 'Mon', 1: 'Tue', 2: 'Wed', 3: 'Thu', 4: 'Fri', 5: 'Sat', 6: 'Sun'})
df['month_en'] = df['month'].map({1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'})
# df['only_date'] = df['date_time'].dt.date
df.sample(20)
return df
def fetch_stats(selected_user, df):
if selected_user == 'All':
user_df = df
else:
user_df = df[df['user'] == selected_user]
total_messages = user_df.shape[0]
media_messages = user_df[user_df['message'] == '<Media omitted>\n']
media_messages = media_messages.shape[0]
links = user_df[user_df['message'].str.contains('http')]
print(links)
links = links.shape[0]
emojis = user_df[user_df['message'].str.contains('[\U0001F600-\U0001F650]')].shape[0]
words = user_df['message'].apply(lambda x: len(x.split()))
total_words = words.sum()
return user_df, total_messages, media_messages, links, emojis, total_words
def busiest_users(df):
user_message_counts = df['user'].value_counts().reset_index()
user_message_counts.columns = ['user', 'message_count']
user_message_counts['percentage'] = (user_message_counts['message_count'] / user_message_counts['message_count'].sum()) * 100
user_message_counts['percentage'] = user_message_counts['percentage'].round(2)
user_message_counts = user_message_counts.sort_values(by='message_count', ascending=False)
busiest_users = user_message_counts
plt.bar(busiest_users.user, busiest_users.message_count)
plt.xticks(rotation=45)
plt.title('Busiest users')
plt.xlabel('Users')
plt.ylabel('Total messages')
return busiest_users, plt
def word_cloud(df, selected_user):
if selected_user == 'All':
user_df = df
else:
user_df = df[df['user'] == selected_user]
f = open('stop_hinglish.txt','r')
stop_words = f.read()
temp = user_df[user_df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
temp = temp[temp['message'] != 'This message was deleted\n']
temp = temp[temp['message'] != 'You deleted this message\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
words = ' '.join(words)
wordcloud = WordCloud(width=800, height=400, random_state=21, max_font_size=110, background_color='white')
wordcloud = wordcloud.generate(words)
plt.figure(figsize=(20, 10))
plt.imshow(wordcloud, interpolation="bilinear")
plt.axis('off')
return plt
def most_common_words(selected_user, df):
f = open('stop_hinglish.txt','r')
stop_words = f.read()
if selected_user != 'All':
df = df[df['user'] == selected_user]
temp = df[df['user'] != 'group_notification']
temp = temp[temp['message'] != '<Media omitted>\n']
temp = temp[temp['message'] != 'This message was deleted\n']
temp = temp[temp['message'] != 'You deleted this message\n']
words = []
for message in temp['message']:
for word in message.lower().split():
if word not in stop_words:
words.append(word)
most_common_df = pd.DataFrame(Counter(words).most_common(50))
most_common_df.columns = ['word', 'word_count']
fig, ax = plt.subplots(figsize=(10, 15))
ax.barh(most_common_df.word, most_common_df.word_count, height=0.8)
ax.set_xlabel('Word count')
ax.set_ylabel('Words')
ax.set_title('Most common words')
return most_common_df, fig
def most_common_emojis(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
emojis = []
for message in df['message']:
emojis.extend([c for c in message if c in emoji.EMOJI_DATA])
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
emoji_df.columns = ['emoji', 'emoji_count']
return emoji_df
def monthly_timeline(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
monthly_timeline = df.groupby(['year', 'month_en']).count()['message'].reset_index()
monthly_timeline['month_year'] = monthly_timeline['month_en'] + ' ' + monthly_timeline['year'].astype(str)
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(monthly_timeline['month_year'], monthly_timeline['message'])
ax.set_title('Messages sent over Months')
ax.set_xlabel('Month-Year')
ax.set_ylabel('Total messages')
return monthly_timeline, fig
def daily_timeline(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
daily_timeline = df.groupby('date').count()['message'].reset_index()
daily_timeline.columns = ['date', 'message_count']
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(daily_timeline['date'], daily_timeline['message_count'])
ax.set_title('Messages sent over time')
ax.set_xlabel('Date')
ax.set_ylabel('Total messages')
return daily_timeline, fig
def weekday_activity_map(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
week_df = df['weekday_en'].value_counts().reset_index()
week_df.columns = ['weekday', 'message_count']
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(week_df['weekday'], week_df['message_count'])
ax.set_title('Messages sent per weekday')
ax.set_xlabel('Weekday')
ax.set_ylabel('Total messages')
return None, fig
def month_activity_map(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
month_df = df['month_en'].value_counts().reset_index()
month_df.columns = ['month', 'message_count']
fig, ax = plt.subplots(figsize=(10, 5))
ax.bar(month_df['month'], month_df['message_count'])
ax.set_title('Messages sent per month')
ax.set_xlabel('Month')
ax.set_ylabel('Total messages')
return month_df, fig
def hour_activity_map(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
# Count the number of messages per hour
hour_counts = df['hour'].value_counts().sort_index()
# Convert hours to radians
hours = np.arange(24)
radians = 2 * np.pi * (hours / 24)
# Create a polar plot
fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={'projection': 'polar'})
ax.bar(radians, hour_counts, width=0.3, bottom=0.2)
ax.set_theta_direction(-1) # Clockwise
ax.set_theta_offset(np.pi / 2.0) # Start from top
ax.set_xticks(radians)
ax.set_xticklabels(hours)
ax.set_yticklabels([])
ax.set_title('Busiest Hours of the Day', va='bottom')
return hour_counts, fig
def activity_heatmap(selected_user, df):
if selected_user != 'All':
df = df[df['user'] == selected_user]
heatmap_data = df.pivot_table(index='weekday_en', columns='hour', values='message', aggfunc='count', fill_value=0)
plt.figure(figsize=(10, 6))
sns.heatmap(heatmap_data, cmap='gray_r', linewidths=.5, fmt='d')
plt.title('Activity Heatmap')
plt.xlabel('Hour of Day')
plt.ylabel('Day of Week')
return plt
def extract_links(df):
links = df[df['message'].str.contains('http', na=False)]
links = links['message'].str.extractall(r'(https?://\S+)')[0]
return links.reset_index(drop=True)
def plot_common_domains(df):
links = extract_links(df)
domains = links.str.extract(r'https?://(?:www\.)?([^/]+)')[0]
domain_counts = domains.value_counts().reset_index()
domain_counts.columns = ['domain', 'count']
fig, ax = plt.subplots(figsize=(15, 5))
ax.bar(domain_counts['domain'], domain_counts['count'], width=0.5)
plt.xticks(rotation='vertical')
ax.set_title('Most Common Domains')
ax.set_xlabel('Domain')
ax.set_ylabel('Count')
return domain_counts, fig |