File size: 6,067 Bytes
5d6a0bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# -*- encoding: utf-8 -*-
# @Author: SWHL
# @Contact: [email protected]
import copy
import importlib
import sys
from pathlib import Path

import cv2
import numpy as np
import yaml

root_dir = Path(__file__).resolve().parent
sys.path.append(str(root_dir))


class TextSystem(object):
    def __init__(self, config_path):
        super(TextSystem).__init__()
        if not Path(config_path).exists():
            raise FileExistsError(f'{config_path} does not exist!')

        config = self.read_yaml(config_path)

        global_config = config['Global']
        self.print_verbose = global_config['print_verbose']
        self.text_score = global_config['text_score']
        self.min_height = global_config['min_height']
        self.width_height_ratio = global_config['width_height_ratio']

        TextDetector = self.init_module(config['Det']['module_name'],
                                        config['Det']['class_name'])
        self.text_detector = TextDetector(config['Det'])

        TextRecognizer = self.init_module(config['Rec']['module_name'],
                                          config['Rec']['class_name'])
        self.text_recognizer = TextRecognizer(config['Rec'])

        self.use_angle_cls = config['Global']['use_angle_cls']
        if self.use_angle_cls:
            TextClassifier = self.init_module(config['Cls']['module_name'],
                                              config['Cls']['class_name'])
            self.text_cls = TextClassifier(config['Cls'])

    def __call__(self, img: np.ndarray):
        h, w = img.shape[:2]
        if self.width_height_ratio == -1:
            use_limit_ratio = False
        else:
            use_limit_ratio = w / h > self.width_height_ratio

        if h <= self.min_height or use_limit_ratio:
            dt_boxes, img_crop_list = self.get_boxes_img_without_det(img, h, w)
        else:
            dt_boxes, elapse = self.text_detector(img)
            if dt_boxes is None or len(dt_boxes) < 1:
                return None, None
            if self.print_verbose:
                print(f'dt_boxes num: {len(dt_boxes)}, elapse: {elapse}')

            dt_boxes = self.sorted_boxes(dt_boxes)
            img_crop_list = self.get_crop_img_list(img, dt_boxes)

        if self.use_angle_cls:
            img_crop_list, _, elapse = self.text_cls(img_crop_list)
            if self.print_verbose:
                print(f'cls num: {len(img_crop_list)}, elapse: {elapse}')

        rec_res, elapse = self.text_recognizer(img_crop_list)
        if self.print_verbose:
            print(f'rec_res num: {len(rec_res)}, elapse: {elapse}')

        filter_boxes, filter_rec_res = self.filter_boxes_rec_by_score(dt_boxes,
                                                                      rec_res)
        return filter_boxes, filter_rec_res

    @staticmethod
    def read_yaml(yaml_path):
        with open(yaml_path, 'rb') as f:
            data = yaml.load(f, Loader=yaml.Loader)
        return data

    @staticmethod
    def init_module(module_name, class_name):
        module_part = importlib.import_module(module_name)
        return getattr(module_part, class_name)

    def get_boxes_img_without_det(self, img, h, w):
        x0, y0, x1, y1 = 0, 0, w, h
        dt_boxes = np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
        dt_boxes = dt_boxes[np.newaxis, ...]
        img_crop_list = [img]
        return dt_boxes, img_crop_list

    def get_crop_img_list(self, img, dt_boxes):
        def get_rotate_crop_image(img, points):
            img_crop_width = int(
                max(
                    np.linalg.norm(points[0] - points[1]),
                    np.linalg.norm(points[2] - points[3])))
            img_crop_height = int(
                max(
                    np.linalg.norm(points[0] - points[3]),
                    np.linalg.norm(points[1] - points[2])))
            pts_std = np.float32([[0, 0], [img_crop_width, 0],
                                  [img_crop_width, img_crop_height],
                                  [0, img_crop_height]])
            M = cv2.getPerspectiveTransform(points, pts_std)
            dst_img = cv2.warpPerspective(
                img,
                M, (img_crop_width, img_crop_height),
                borderMode=cv2.BORDER_REPLICATE,
                flags=cv2.INTER_CUBIC)
            dst_img_height, dst_img_width = dst_img.shape[0:2]
            if dst_img_height * 1.0 / dst_img_width >= 1.5:
                dst_img = np.rot90(dst_img)
            return dst_img

        img_crop_list = []
        for box in dt_boxes:
            tmp_box = copy.deepcopy(box)
            img_crop = get_rotate_crop_image(img, tmp_box)
            img_crop_list.append(img_crop)
        return img_crop_list

    @staticmethod
    def sorted_boxes(dt_boxes):
        """
        Sort text boxes in order from top to bottom, left to right
        args:
            dt_boxes(array):detected text boxes with shape [4, 2]
        return:
            sorted boxes(array) with shape [4, 2]
        """
        num_boxes = dt_boxes.shape[0]
        sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
        _boxes = list(sorted_boxes)

        for i in range(num_boxes - 1):
            if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                    (_boxes[i + 1][0][0] < _boxes[i][0][0]):
                tmp = _boxes[i]
                _boxes[i] = _boxes[i + 1]
                _boxes[i + 1] = tmp
        return _boxes

    def filter_boxes_rec_by_score(self, dt_boxes, rec_res):
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.text_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res


if __name__ == '__main__':
    text_sys = TextSystem('config.yaml')

    import cv2
    img = cv2.imread('resources/test_images/det_images/ch_en_num.jpg')

    result = text_sys(img)
    print(result)