ryanramos commited on
Commit
8beec5e
·
1 Parent(s): d1b8c9b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import torch
3
+ from PIL import Image
4
+ from ruamel import yaml
5
+ from albef.model import albef_model_for_vqa
6
+ from albef.data.transforms import ALBEFTextTransform, testing_image_transform
7
+ import gradio as gr
8
+
9
+ data_dir = "./vqa_data/"
10
+
11
+ config = yaml.load(open("./configs/vqa.yaml", "r"), Loader=yaml.Loader)
12
+ model = albef_model_for_vqa(config)
13
+
14
+ checkpoint_url = "https://download.pytorch.org/models/multimodal/albef/finetuned_vqa_checkpoint.pt"
15
+ checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, map_location='cpu')
16
+ model.load_state_dict(checkpoint)
17
+
18
+ image_transform = testing_image_transform()
19
+ question_transform = ALBEFTextTransform(add_end_token=False)
20
+ answer_transform = ALBEFTextTransform(do_pre_process=False)
21
+
22
+ answer_list = json.load(open(data_dir + "answer_list.json", "r"))
23
+
24
+ def infer(image, question):
25
+ images = [image]
26
+ image_input = [image_transform(image) for image in images]
27
+ image_input = torch.stack(image_input, dim=0)
28
+ question_input = question_transform([question])
29
+ question_atts = (question_input != 0).type(torch.long)
30
+ answer_input = answer_transform(answer_list)
31
+ answer_atts = (answer_input != 0).type(torch.long)
32
+
33
+ answer_ids, _ = model(
34
+ image_input,
35
+ question_input,
36
+ question_atts,
37
+ answer_input,
38
+ answer_atts,
39
+ k=1,
40
+ is_train=False,
41
+ )
42
+
43
+ predicted_answer_id = answer_ids[0]
44
+ predicted_answer = answer_list[predicted_answer_id]
45
+
46
+ return predicted_answer
47
+
48
+ demo = gr.Interface(
49
+ fn=infer,
50
+ inputs=[gr.Image(label='image', type='pil', image_mode='RGB'), gr.Text(label='question')],
51
+ outputs=gr.Text(label='answer'),
52
+ # examples=[
53
+ # ['vqav2.png', 'What sport is this?'],
54
+ # ['vizwiz.jpeg', 'What piece of meat have I taken out of the freezer?'],
55
+ # ['aqua.png', 'what does bol lean nonchalantly on'],
56
+ # ['robotvqa.png', 'How many silver spoons are there?'],
57
+ # ]
58
+ )
59
+
60
+ demo.launch()