albef-vqa / app.py
ryanramos's picture
Update app.py
57f866b
raw
history blame contribute delete
2.47 kB
import json
import torch
from PIL import Image
from ruamel import yaml
from model import albef_model_for_vqa
from data.transforms import ALBEFTextTransform, testing_image_transform
import gradio as gr
data_dir = "./"
config = yaml.load(open("./configs/vqa.yaml", "r"), Loader=yaml.Loader)
model = albef_model_for_vqa(config)
checkpoint_url = "https://download.pytorch.org/models/multimodal/albef/finetuned_vqa_checkpoint.pt"
checkpoint = torch.hub.load_state_dict_from_url(checkpoint_url, map_location='cpu')
model.load_state_dict(checkpoint)
image_transform = testing_image_transform()
question_transform = ALBEFTextTransform(add_end_token=False)
answer_transform = ALBEFTextTransform(do_pre_process=False)
vqa_data = json.load(open(data_dir + "vqa_data.json", "r"))
answer_list = json.load(open(data_dir + "answer_list.json", "r"))
examples = [[data['image'], data['question']] for data in vqa_data]
title = 'VQA with ALBEF'
description = 'VQA with [ALBEF](https://arxiv.org/abs/2107.07651), adapted from the [torchmultimodal example notebook](https://github.com/facebookresearch/multimodal/blob/main/examples/albef/vqa_with_albef.ipynb).'
article = '''```bibtex
@article{li2021align,
title={Align before fuse: Vision and language representation learning with momentum distillation},
author={Li, Junnan and Selvaraju, Ramprasaath and Gotmare, Akhilesh and Joty, Shafiq and Xiong, Caiming and Hoi, Steven Chu Hong},
journal={Advances in neural information processing systems},
volume={34},
pages={9694--9705},
year={2021}
}
```'''
def infer(image, question):
images = [image]
image_input = [image_transform(image) for image in images]
image_input = torch.stack(image_input, dim=0)
question_input = question_transform([question])
question_atts = (question_input != 0).type(torch.long)
answer_input = answer_transform(answer_list)
answer_atts = (answer_input != 0).type(torch.long)
answer_ids, _ = model(
image_input,
question_input,
question_atts,
answer_input,
answer_atts,
k=1,
is_train=False,
)
predicted_answer_id = answer_ids[0]
predicted_answer = answer_list[predicted_answer_id]
return predicted_answer
demo = gr.Interface(
fn=infer,
inputs=[gr.Image(label='image', type='pil', image_mode='RGB'), gr.Text(label='question')],
outputs=gr.Text(label='answer'),
examples=examples,
title=title,
description=description,
article=article
)
demo.launch()