Ramendra commited on
Commit
3e54868
·
1 Parent(s): 06c5f30

Update app.py.py

Browse files
Files changed (1) hide show
  1. app.py.py +3 -17
app.py.py CHANGED
@@ -6,17 +6,13 @@ Automatically generated by Colaboratory.
6
  Original file is located at
7
  https://colab.research.google.com/drive/13X2E9v7GxryXyT39R5CzxrNwxfA6KMFJ
8
  """
9
-
10
- !pip install gradio
11
-
12
  import gradio as gr
13
  from PIL import Image
14
  from timeit import default_timer as timer
15
  from tensorflow import keras
16
  import numpy as np
17
 
18
- MODEL = keras.models.load_model(
19
- "convnet_from_scratch_with_augmentation.keras")
20
 
21
  def predict(img):
22
 
@@ -41,6 +37,7 @@ def predict(img):
41
  predict('/content/cat.1505.jpg')
42
 
43
  # Create title, description and article strings
 
44
  title = "Classification Demo"
45
  description = "Cat/Dog classification Tensorflow model with Augmentted small dataset"
46
 
@@ -49,6 +46,7 @@ demo = gr.Interface(fn=predict, # mapping function from input to output
49
  inputs=gr.Image(type='filepath'), # what are the inputs?
50
  outputs=[gr.Label(label="Predictions"), # what are the outputs?
51
  gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
 
52
  title=title,
53
  description=description,)
54
 
@@ -56,15 +54,3 @@ demo = gr.Interface(fn=predict, # mapping function from input to output
56
  demo.launch(debug=False, # print errors locally?
57
  share=True) # generate a publically shareable URL?
58
 
59
- pip install tensorflow
60
-
61
- import PIL
62
-
63
- import tensorflow as tf
64
-
65
- import timeit
66
-
67
- print(gr.__version__)
68
- print(np.__version__)
69
- print(tf.__version__)
70
- print(PIL.__version__)
 
6
  Original file is located at
7
  https://colab.research.google.com/drive/13X2E9v7GxryXyT39R5CzxrNwxfA6KMFJ
8
  """
 
 
 
9
  import gradio as gr
10
  from PIL import Image
11
  from timeit import default_timer as timer
12
  from tensorflow import keras
13
  import numpy as np
14
 
15
+ MODEL = keras.models.load_model("convnet_from_scratch_with_augmentation.keras")
 
16
 
17
  def predict(img):
18
 
 
37
  predict('/content/cat.1505.jpg')
38
 
39
  # Create title, description and article strings
40
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
41
  title = "Classification Demo"
42
  description = "Cat/Dog classification Tensorflow model with Augmentted small dataset"
43
 
 
46
  inputs=gr.Image(type='filepath'), # what are the inputs?
47
  outputs=[gr.Label(label="Predictions"), # what are the outputs?
48
  gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
49
+ examples=example_list,
50
  title=title,
51
  description=description,)
52
 
 
54
  demo.launch(debug=False, # print errors locally?
55
  share=True) # generate a publically shareable URL?
56