Spaces:
Sleeping
Sleeping
File size: 2,113 Bytes
7462b59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
# -*- coding: utf-8 -*-
"""gradio_deploy.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/13X2E9v7GxryXyT39R5CzxrNwxfA6KMFJ
"""
!pip install gradio
import gradio as gr
from PIL import Image
from timeit import default_timer as timer
from tensorflow import keras
import numpy as np
MODEL = keras.models.load_model(
"convnet_from_scratch_with_augmentation.keras")
def predict(img):
# Start the timer
start_time = timer()
# Reading the image and size transformation
features = Image.open(img)
features = features.resize((180, 180))
features = np.array(features).reshape(1, 180,180,3)
# Create a prediction label and prediction probability dictionary for each prediction class
# This is the required format for Gradio's output parameter
pred_labels_and_probs = {'dog' if MODEL.predict(features)> 0.5 else 'cat':float(MODEL.predict(features))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
predict('/content/cat.1505.jpg')
# Create title, description and article strings
title = "Classification Demo"
description = "Cat/Dog classification Tensorflow model with Augmentted small dataset"
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type='filepath'), # what are the inputs?
outputs=[gr.Label(label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
title=title,
description=description,)
# Launch the demo!
demo.launch(debug=False, # print errors locally?
share=True) # generate a publically shareable URL?
pip install tensorflow
import PIL
import tensorflow as tf
import timeit
print(gr.__version__)
print(np.__version__)
print(tf.__version__)
print(PIL.__version__) |