File size: 5,138 Bytes
e3278e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
API Handler for calling Vertex AI Model Garden Models

Most Vertex Model Garden Models are OpenAI compatible - so this handler calls `openai_like_chat_completions`

Usage:

response = litellm.completion(
    model="vertex_ai/openai/5464397967697903616",
    messages=[{"role": "user", "content": "Hello, how are you?"}],
)

Sent to this route when `model` is in the format `vertex_ai/openai/{MODEL_ID}`


Vertex Documentation for using the OpenAI /chat/completions endpoint: https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/community/model_garden/model_garden_pytorch_llama3_deployment.ipynb
"""

from typing import Callable, Optional, Union

import httpx  # type: ignore

from litellm.utils import ModelResponse

from ..common_utils import VertexAIError
from ..vertex_llm_base import VertexBase


def create_vertex_url(
    vertex_location: str,
    vertex_project: str,
    stream: Optional[bool],
    model: str,
    api_base: Optional[str] = None,
) -> str:
    """Return the base url for the vertex garden models"""
    #  f"https://{self.endpoint.location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{self.endpoint.location}"
    return f"https://{vertex_location}-aiplatform.googleapis.com/v1beta1/projects/{vertex_project}/locations/{vertex_location}/endpoints/{model}"


class VertexAIModelGardenModels(VertexBase):
    def __init__(self) -> None:
        pass

    def completion(
        self,
        model: str,
        messages: list,
        model_response: ModelResponse,
        print_verbose: Callable,
        encoding,
        logging_obj,
        api_base: Optional[str],
        optional_params: dict,
        custom_prompt_dict: dict,
        headers: Optional[dict],
        timeout: Union[float, httpx.Timeout],
        litellm_params: dict,
        vertex_project=None,
        vertex_location=None,
        vertex_credentials=None,
        logger_fn=None,
        acompletion: bool = False,
        client=None,
    ):
        """
        Handles calling Vertex AI Model Garden Models in OpenAI compatible format

        Sent to this route when `model` is in the format `vertex_ai/openai/{MODEL_ID}`
        """
        try:
            import vertexai

            from litellm.llms.openai_like.chat.handler import OpenAILikeChatHandler
            from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
                VertexLLM,
            )
        except Exception as e:

            raise VertexAIError(
                status_code=400,
                message=f"""vertexai import failed please run `pip install -U "google-cloud-aiplatform>=1.38"`. Got error: {e}""",
            )

        if not (
            hasattr(vertexai, "preview") or hasattr(vertexai.preview, "language_models")
        ):
            raise VertexAIError(
                status_code=400,
                message="""Upgrade vertex ai. Run `pip install "google-cloud-aiplatform>=1.38"`""",
            )
        try:
            model = model.replace("openai/", "")
            vertex_httpx_logic = VertexLLM()

            access_token, project_id = vertex_httpx_logic._ensure_access_token(
                credentials=vertex_credentials,
                project_id=vertex_project,
                custom_llm_provider="vertex_ai",
            )

            openai_like_chat_completions = OpenAILikeChatHandler()

            ## CONSTRUCT API BASE
            stream: bool = optional_params.get("stream", False) or False
            optional_params["stream"] = stream
            default_api_base = create_vertex_url(
                vertex_location=vertex_location or "us-central1",
                vertex_project=vertex_project or project_id,
                stream=stream,
                model=model,
            )

            if len(default_api_base.split(":")) > 1:
                endpoint = default_api_base.split(":")[-1]
            else:
                endpoint = ""

            _, api_base = self._check_custom_proxy(
                api_base=api_base,
                custom_llm_provider="vertex_ai",
                gemini_api_key=None,
                endpoint=endpoint,
                stream=stream,
                auth_header=None,
                url=default_api_base,
            )
            model = ""
            return openai_like_chat_completions.completion(
                model=model,
                messages=messages,
                api_base=api_base,
                api_key=access_token,
                custom_prompt_dict=custom_prompt_dict,
                model_response=model_response,
                print_verbose=print_verbose,
                logging_obj=logging_obj,
                optional_params=optional_params,
                acompletion=acompletion,
                litellm_params=litellm_params,
                logger_fn=logger_fn,
                client=client,
                timeout=timeout,
                encoding=encoding,
                custom_llm_provider="vertex_ai",
            )

        except Exception as e:
            raise VertexAIError(status_code=500, message=str(e))