import gradio as gr import torch from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration from PIL import Image # Load model and processor model_id = "google/paligemma2-28b-mix-448" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto").eval() processor = PaliGemmaProcessor.from_pretrained(model_id) def generate_description(image, prompt): if image is None: return "Please upload an image." model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(torch.bfloat16).to(model.device) input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) return decoded # Gradio UI with gr.Blocks() as demo: gr.Markdown("# PaliGemma Image Captioning") image_input = gr.Image(type="pil", label="Upload Image") prompt_input = gr.Textbox(label="Enter Prompt", value="describe en") output_text = gr.Textbox(label="Generated Description") submit_button = gr.Button("Generate") submit_button.click(generate_description, inputs=[image_input, prompt_input], outputs=output_text) demo.launch()