Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import spaces
|
4 |
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
from langchain_community.document_loaders import TextLoader
|
6 |
from langchain_community.vectorstores import FAISS
|
@@ -8,6 +7,10 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
10 |
from langchain_huggingface import HuggingFacePipeline
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Load and process the document
|
13 |
doc_loader = TextLoader("dataset.txt")
|
@@ -22,18 +25,11 @@ vectordb = FAISS.from_documents(split_docs, embeddings)
|
|
22 |
# Load model and tokenizer
|
23 |
model_name = "01-ai/Yi-Coder-9B-Chat"
|
24 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
model_name,
|
31 |
-
device_map="auto",
|
32 |
-
torch_dtype=torch.float16 if device.type == "cuda" else torch.float32
|
33 |
-
)
|
34 |
-
return model, device
|
35 |
-
|
36 |
-
model, device = setup_model()
|
37 |
|
38 |
# Set up the QA pipeline
|
39 |
qa_pipeline = pipeline(
|
@@ -41,8 +37,7 @@ qa_pipeline = pipeline(
|
|
41 |
model=model,
|
42 |
tokenizer=tokenizer,
|
43 |
max_new_tokens=750,
|
44 |
-
pad_token_id=tokenizer.eos_token_id
|
45 |
-
device=device
|
46 |
)
|
47 |
|
48 |
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
@@ -67,7 +62,6 @@ def clean_response(response):
|
|
67 |
return result.split("Answer:")[1].strip()
|
68 |
return result.strip()
|
69 |
|
70 |
-
@spaces.GPU
|
71 |
def chatbot_response(user_input):
|
72 |
processed_query = preprocess_query(user_input)
|
73 |
raw_response = qa_chain.invoke({"query": processed_query})
|
@@ -90,4 +84,4 @@ with gr.Blocks() as chat_interface:
|
|
90 |
|
91 |
# Launch the interface
|
92 |
if __name__ == "__main__":
|
93 |
-
chat_interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from langchain_huggingface import HuggingFaceEmbeddings
|
4 |
from langchain_community.document_loaders import TextLoader
|
5 |
from langchain_community.vectorstores import FAISS
|
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
from langchain_huggingface import HuggingFacePipeline
|
10 |
+
import spaces
|
11 |
+
zero = torch.Tensor([0]).cuda()
|
12 |
+
print(zero.device) # This will likely print 'cpu'
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
# Load and process the document
|
16 |
doc_loader = TextLoader("dataset.txt")
|
|
|
25 |
# Load model and tokenizer
|
26 |
model_name = "01-ai/Yi-Coder-9B-Chat"
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
device_map="auto",
|
31 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32
|
32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Set up the QA pipeline
|
35 |
qa_pipeline = pipeline(
|
|
|
37 |
model=model,
|
38 |
tokenizer=tokenizer,
|
39 |
max_new_tokens=750,
|
40 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
41 |
)
|
42 |
|
43 |
llm = HuggingFacePipeline(pipeline=qa_pipeline)
|
|
|
62 |
return result.split("Answer:")[1].strip()
|
63 |
return result.strip()
|
64 |
|
|
|
65 |
def chatbot_response(user_input):
|
66 |
processed_query = preprocess_query(user_input)
|
67 |
raw_response = qa_chain.invoke({"query": processed_query})
|
|
|
84 |
|
85 |
# Launch the interface
|
86 |
if __name__ == "__main__":
|
87 |
+
chat_interface.launch()
|