import asyncio import json import logging import os from typing import List, Dict, Any from cryptography.fernet import Fernet from botbuilder.core import StatePropertyAccessor, TurnContext from botbuilder.dialogs import Dialog, DialogSet, DialogTurnStatus from dialog_helper import DialogHelper import aiohttp import speech_recognition as sr from PIL import Image from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer # Ensure nltk is installed and download required data try: import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) except ImportError: import subprocess import sys subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) import nltk from nltk.tokenize import word_tokenize nltk.download('punkt', quiet=True) # Import perspectives from perspectives import ( Perspective, NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective, PsychologicalPerspective ) # Load environment variables from dotenv import load_dotenv load_dotenv() # Setup Logging def setup_logging(config): if config.get('logging_enabled', True): log_level = config.get('log_level', 'DEBUG').upper() numeric_level = getattr(logging, log_level, logging.DEBUG) logging.basicConfig( filename='universal_reasoning.log', level=numeric_level, format='%(asctime)s - %(levelname)s - %(message)s' ) else: logging.disable(logging.CRITICAL) # Load JSON configuration def load_json_config(file_path): if not os.path.exists(file_path): logging.error(f"Configuration file '{file_path}' not found.") return {} try: with open(file_path, 'r') as file: config = json.load(file) logging.info(f"Configuration loaded from '{file_path}'.") return config except json.JSONDecodeError as e: logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") return {} # Encrypt sensitive information def encrypt_sensitive_data(data, key): fernet = Fernet(key) encrypted_data = fernet.encrypt(data.encode()) return encrypted_data # Decrypt sensitive information def decrypt_sensitive_data(encrypted_data, key): fernet = Fernet(key) decrypted_data = fernet.decrypt(encrypted_data).decode() return decrypted_data # Securely destroy sensitive information def destroy_sensitive_data(data): del data # Define the Element class class Element: def __init__(self, name, symbol, representation, properties, interactions, defense_ability): self.name = name self.symbol = symbol self.representation = representation self.properties = properties self.interactions = interactions self.defense_ability = defense_ability def execute_defense_function(self): message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" logging.info(message) return message # Define the CustomRecognizer class class CustomRecognizer: def recognize(self, question): # Simple keyword-based recognizer for demonstration purposes if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): return RecognizerResult(question) return RecognizerResult(None) def get_top_intent(self, recognizer_result): if recognizer_result.text: return "ElementDefense" else: return "None" class RecognizerResult: def __init__(self, text): self.text = text # Universal Reasoning Aggregator class UniversalReasoning: def __init__(self, config): self.config = config self.perspectives = self.initialize_perspectives() self.elements = self.initialize_elements() self.recognizer = CustomRecognizer() self.context_history = [] # Maintain context history self.feedback = [] # Store user feedback # Initialize the sentiment analyzer self.sentiment_analyzer = SentimentIntensityAnalyzer() def initialize_perspectives(self): perspective_names = self.config.get('enabled_perspectives', [ "newton", "davinci", "human_intuition", "neural_network", "quantum_computing", "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation", "psychological" ]) perspective_classes = { "newton": NewtonPerspective, "davinci": DaVinciPerspective, "human_intuition": HumanIntuitionPerspective, "neural_network": NeuralNetworkPerspective, "quantum_computing": QuantumComputingPerspective, "resilient_kindness": ResilientKindnessPerspective, "mathematical": MathematicalPerspective, "philosophical": PhilosophicalPerspective, "copilot": CopilotPerspective, "bias_mitigation": BiasMitigationPerspective, "psychological": PsychologicalPerspective } perspectives = [] for name in perspective_names: cls = perspective_classes.get(name.lower()) if cls: perspectives.append(cls(self.config)) logging.debug(f"Perspective '{name}' initialized.") else: logging.warning(f"Perspective '{name}' is not recognized and will be skipped.") return perspectives def initialize_elements(self): elements = [ Element( name="Hydrogen", symbol="H", representation="Lua", properties=["Simple", "Lightweight", "Versatile"], interactions=["Easily integrates with other languages and systems"], defense_ability="Evasion" ), # You can add more elements as needed Element( name="Diamond", symbol="D", representation="Kotlin", properties=["Modern", "Concise", "Safe"], interactions=["Used for Android development"], defense_ability="Adaptability" ) ] return elements async def generate_response(self, question): self.context_history.append(question) # Add question to context history sentiment_score = self.analyze_sentiment(question) real_time_data = await self.fetch_real_time_data("https://api.example.com/data") responses = [] tasks = [] # Generate responses from perspectives concurrently for perspective in self.perspectives: if asyncio.iscoroutinefunction(perspective.generate_response): tasks.append(perspective.generate_response(question)) else: # Wrap synchronous functions in coroutine async def sync_wrapper(perspective, question): return perspective.generate_response(question) tasks.append(sync_wrapper(perspective, question)) perspective_results = await asyncio.gather(*tasks, return_exceptions=True) for perspective, result in zip(self.perspectives, perspective_results): if isinstance(result, Exception): logging.error(f"Error generating response from {perspective.__class__.__name__}: {result}") else: responses.append(result) logging.debug(f"Response from {perspective.__class__.__name__}: {result}") # Handle element defense logic recognizer_result = self.recognizer.recognize(question) top_intent = self.recognizer.get_top_intent(recognizer_result) if top_intent == "ElementDefense": element_name = recognizer_result.text.strip() element = next( (el for el in self.elements if el.name.lower() in element_name.lower()), None ) if element: defense_message = element.execute_defense_function() responses.append(defense_message) else: logging.info(f"No matching element found for '{element_name}'") ethical_considerations = self.config.get( 'ethical_considerations', "Always act with transparency, fairness, and respect for privacy." ) responses.append(f"**Ethical Considerations:**\n{ethical_considerations}") formatted_response = "\n\n".join(responses) return formatted_response def analyze_sentiment(self, text): sentiment_score = self.sentiment_analyzer.polarity_scores(text) logging.info(f"Sentiment analysis result: {sentiment_score}") return sentiment_score async def fetch_real_time_data(self, source_url): async with aiohttp.ClientSession() as session: async with session.get(source_url) as response: data = await response.json() logging.info(f"Real-time data fetched from {source_url}: {data}") return data async def run_dialog(self, dialog: Dialog, turn_context: TurnContext, accessor: StatePropertyAccessor) -> None: await DialogHelper.run_dialog(dialog, turn_context, accessor) def save_response(self, response): if self.config.get('enable_response_saving', False): save_path = self.config.get('response_save_path', 'responses.txt') try: with open(save_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response saved to '{save_path}'.") except Exception as e: logging.error(f"Error saving response to '{save_path}': {e}") def backup_response(self, response): if self.config.get('backup_responses', {}).get('enabled', False): backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') try: with open(backup_path, 'a', encoding='utf-8') as file: file.write(response + '\n') logging.info(f"Response backed up to '{backup_path}'.") async def collect_user_feedback(self, turn_context: TurnContext): # Collect feedback from the user feedback = turn_context.activity.text logging.info(f"User feedback received: {feedback}") # Process feedback for continuous learning self.process_feedback(feedback) def process_feedback(self, feedback): # Implement feedback processing logic logging.info(f"Processing feedback: {feedback}") # Example: Adjust response generation based on feedback # This can be expanded with more sophisticated learning algorithms def add_new_perspective(self, perspective_name, perspective_class): if perspective_name.lower() not in [p.__class__.__name__.lower() for p in self.perspectives]: self.perspectives.append(perspective_class(self.config)) logging.info(f"New perspective '{perspective_name}' added.") else: logging.warning(f"Perspective '{perspective_name}' already exists.") def handle_voice_input(self): recognizer = sr.Recognizer() with sr.Microphone() as source: print("Listening...") audio = recognizer.listen(source) try: text = recognizer.recognize_google(audio) print(f"Voice input recognized: {text}") return text except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") return None except sr.RequestError as e: print(f"Could not request results from Google Speech Recognition service; {e}") return None def handle_image_input(self, image_path): try: image = Image.open(image_path) print(f"Image input processed: {image_path}") return image except Exception as e: print(f"Error processing image input: {e}") return None # Example usage if __name__ == "__main__": config = load_json_config('config.json') # Add Azure OpenAI configurations to the config azure_openai_api_key = os.getenv('AZURE_OPENAI_API_KEY') azure_openai_endpoint = os.getenv('AZURE_OPENAI_ENDPOINT') # Encrypt sensitive data encryption_key = Fernet.generate_key() encrypted_api_key = encrypt_sensitive_data(azure_openai_api_key, encryption_key) encrypted_endpoint = encrypt_sensitive_data(azure_openai_endpoint, encryption_key) # Add encrypted data to config config['azure_openai_api_key'] = encrypted_api_key config['azure_openai_endpoint'] = encrypted_endpoint setup_logging(config) universal_reasoning = UniversalReasoning(config) question = "Tell me about Hydrogen and its defense mechanisms." response = asyncio.run(universal_reasoning.generate_response(question)) print(response) if response: universal_reasoning.save_response(response) universal_reasoning.backup_response(response) # Decrypt and destroy sensitive data decrypted_api_key = decrypt_sensitive_data(encrypted_api_key, encryption_key) decrypted_endpoint = decrypt_sensitive_data(encrypted_endpoint, encryption_key) destroy_sensitive_data(decrypted_api_key) destroy_sensitive_data(decrypted_endpoint) # Handle voice input voice_input = universal_reasoning.handle_voice_input() if voice_input: response = asyncio.run(universal_reasoning.generate_response(voice_input)) print(response) # Handle image input image_input = universal_reasoning.handle_image_input("path_to_image.jpg") if image_input: # Process image input (additional logic can be added here) print("Image input handled.")