import os import cv2 import numpy as np import logging from tensorflow.keras.models import load_model # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class TBImageProcessor: """Processes TB images using a trained CNN model for risk assessment.""" def __init__(self, model_path="tb_cnn_model.h5"): # Validate model path if not os.path.exists(model_path): logger.error(f"Model path '{model_path}' does not exist. Please check the path.") self.model = None return try: self.model = load_model(model_path) logger.info("TB Image Processor model loaded successfully.") except Exception as e: logger.error(f"Failed to load the TB Image Model: {e}") self.model = None def process_image(self, image_path): """Analyze a TB image and return risk assessment.""" # Validate the image file if not os.path.exists(image_path): logger.error(f"Image path '{image_path}' does not exist.") return {"error": "Image file not found."} if self.model is None: logger.error("Model is not loaded. Cannot process the image.") return {"error": "Model not loaded."} try: # Load and preprocess image image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) if image is None: logger.error(f"Failed to read the image at path '{image_path}'.") return {"error": "Invalid image format or corrupted file."} # Resize for CNN input and normalize if image.shape[0] < 128 or image.shape[1] < 128: logger.warning("Image dimensions are smaller than expected, resizing may affect accuracy.") image = cv2.resize(image, (128, 128)) image = np.expand_dims(image, axis=[0, -1]) / 255.0 # Make prediction prediction = self.model.predict(image) confidence = float(prediction[0][0]) result = "TB Detected" if confidence > 0.5 else "No TB" logger.info(f"Prediction result: {result}, Confidence: {confidence:.2f}") return { "result": result, "confidence": confidence } except Exception as e: logger.error(f"Error during image processing: {e}") return {"error": f"Failed to process image: {str(e)}"} # Example usage if __name__ == "__main__": # Specify the model and image paths model_path = "path/to/your/tb_cnn_model.h5" image_path = "path/to/your/tb_image.jpg" # Instantiate the processor and analyze the image processor = TBImageProcessor(model_path=model_path) result = processor.process_image(image_path=image_path) # Log or print the final result if "error" in result: logger.error(f"Processing failed: {result['error']}") else: logger.info(f"Final Result: {result['result']}, Confidence: {result['confidence']:.2f}")