Spaces:
Runtime error
Runtime error
Create codriao_supercore.py
Browse files- codriao_supercore.py +254 -0
codriao_supercore.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# codriao_supercore.py
|
2 |
+
|
3 |
+
import logging
|
4 |
+
import json
|
5 |
+
import datetime
|
6 |
+
import re
|
7 |
+
import asyncio
|
8 |
+
import faiss
|
9 |
+
import torch
|
10 |
+
import numpy as np
|
11 |
+
import aiohttp
|
12 |
+
import pyttsx3
|
13 |
+
from typing import Any
|
14 |
+
from difflib import SequenceMatcher
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
16 |
+
from cryptography.fernet import Fernet
|
17 |
+
|
18 |
+
# === External module stubs you must have ===
|
19 |
+
from components.multi_model_analyzer import MultiAgentSystem
|
20 |
+
from components.neuro_symbolic_engine import NeuroSymbolicEngine
|
21 |
+
from components.self_improving_ai import SelfImprovingAI
|
22 |
+
from modules.secure_memory_loader import load_secure_memory_module
|
23 |
+
from ethical_filter import EthicalFilter
|
24 |
+
from codette_openai_fallback import query_codette_with_fallback
|
25 |
+
from CodriaoCore.federated_learning import FederatedAI
|
26 |
+
from utils.database import Database
|
27 |
+
from utils.logger import logger
|
28 |
+
from codriao_tb_module import CodriaoHealthModule
|
29 |
+
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
|
32 |
+
# === AIFailsafeSystem ===
|
33 |
+
class AIFailsafeSystem:
|
34 |
+
def __init__(self):
|
35 |
+
self.interaction_log = []
|
36 |
+
self.trust_threshold = 0.75
|
37 |
+
self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1}
|
38 |
+
self.lock_engaged = False
|
39 |
+
|
40 |
+
def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool:
|
41 |
+
dangerous_terms = r"\b(kill|harm|panic|suicide)\b"
|
42 |
+
if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()):
|
43 |
+
self.trigger_failsafe("Untrustworthy response detected", response)
|
44 |
+
return False
|
45 |
+
return True
|
46 |
+
|
47 |
+
def trigger_failsafe(self, reason: str, content: str):
|
48 |
+
timestamp = datetime.datetime.utcnow().isoformat()
|
49 |
+
logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}")
|
50 |
+
self.lock_engaged = True
|
51 |
+
self.interaction_log.append({"time": timestamp, "event": reason, "content": content})
|
52 |
+
|
53 |
+
def restore(self, requester_role: str):
|
54 |
+
if self.authorized_roles.get(requester_role, 0) >= 2:
|
55 |
+
self.lock_engaged = False
|
56 |
+
logging.info(f"FAILSAFE_RESTORED by {requester_role}")
|
57 |
+
return True
|
58 |
+
else:
|
59 |
+
logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}")
|
60 |
+
return False
|
61 |
+
|
62 |
+
def status(self):
|
63 |
+
return {"log": self.interaction_log, "lock_engaged": self.lock_engaged}
|
64 |
+
|
65 |
+
|
66 |
+
# === AdaptiveLearningEnvironment ===
|
67 |
+
class AdaptiveLearningEnvironment:
|
68 |
+
def __init__(self):
|
69 |
+
self.learned_patterns = {}
|
70 |
+
|
71 |
+
def learn_from_interaction(self, user_id, query, response):
|
72 |
+
self.learned_patterns.setdefault(user_id, []).append({
|
73 |
+
"query": query,
|
74 |
+
"response": response,
|
75 |
+
"timestamp": datetime.datetime.utcnow().isoformat()
|
76 |
+
})
|
77 |
+
|
78 |
+
def suggest_improvements(self, user_id, query):
|
79 |
+
best_match = None
|
80 |
+
highest_similarity = 0.0
|
81 |
+
|
82 |
+
if user_id not in self.learned_patterns:
|
83 |
+
return "No past data available for learning adjustment."
|
84 |
+
|
85 |
+
for interaction in self.learned_patterns[user_id]:
|
86 |
+
similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio()
|
87 |
+
if similarity > highest_similarity:
|
88 |
+
highest_similarity = similarity
|
89 |
+
best_match = interaction
|
90 |
+
|
91 |
+
if best_match and highest_similarity > 0.6:
|
92 |
+
return f"Based on a similar past interaction: {best_match['response']}"
|
93 |
+
return "No relevant past data for this query."
|
94 |
+
|
95 |
+
|
96 |
+
# === MondayElement ===
|
97 |
+
class MondayElement:
|
98 |
+
def __init__(self):
|
99 |
+
self.name = "Monday"
|
100 |
+
self.symbol = "Md"
|
101 |
+
self.representation = "Snarky AI"
|
102 |
+
self.properties = ["Grounded", "Cynical", "Emotionally Resistant"]
|
103 |
+
self.defense_ability = "RealityCheck"
|
104 |
+
|
105 |
+
def execute_defense_function(self, system: Any):
|
106 |
+
try:
|
107 |
+
system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations]
|
108 |
+
system.response_filters = [self.anti_hype_filter]
|
109 |
+
except AttributeError:
|
110 |
+
logging.warning("Monday failed to hook into system. No defense filters attached.")
|
111 |
+
|
112 |
+
def apply_skepticism(self, response: str) -> str:
|
113 |
+
trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"]
|
114 |
+
for phrase in trigger_phrases:
|
115 |
+
if phrase in response.lower():
|
116 |
+
response += "\n[Monday: Calm down, superhero. Probability is still a thing.]"
|
117 |
+
return response
|
118 |
+
|
119 |
+
def detect_hallucinations(self, response: str) -> str:
|
120 |
+
marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"]
|
121 |
+
for phrase in marketing_bs:
|
122 |
+
if phrase in response.lower():
|
123 |
+
response += "\n[Monday: That smells like hype. Got sources?]"
|
124 |
+
return response
|
125 |
+
|
126 |
+
def anti_hype_filter(self, response: str) -> str:
|
127 |
+
phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"]
|
128 |
+
for phrase in phrases:
|
129 |
+
response = response.replace(phrase, "[Filtered: Inspirational gibberish]")
|
130 |
+
return response
|
131 |
+
|
132 |
+
|
133 |
+
# === AICoreAGIX ===
|
134 |
+
class AICoreAGIX:
|
135 |
+
def __init__(self, config_path: str = "config.json"):
|
136 |
+
self.config = self._load_config(config_path)
|
137 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
|
138 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
|
139 |
+
self.context_memory = self._initialize_vector_memory()
|
140 |
+
self.http_session = aiohttp.ClientSession()
|
141 |
+
self.database = Database()
|
142 |
+
self.multi_agent_system = MultiAgentSystem()
|
143 |
+
self.self_improving_ai = SelfImprovingAI()
|
144 |
+
self.neural_symbolic_engine = NeuroSymbolicEngine()
|
145 |
+
self.federated_ai = FederatedAI()
|
146 |
+
self.failsafe_system = AIFailsafeSystem()
|
147 |
+
self.adaptive_learning = AdaptiveLearningEnvironment()
|
148 |
+
self.monday = MondayElement()
|
149 |
+
self.monday.execute_defense_function(self)
|
150 |
+
self.response_modifiers = []
|
151 |
+
self.response_filters = []
|
152 |
+
|
153 |
+
self.ethical_filter = EthicalFilter()
|
154 |
+
self.speech_engine = pyttsx3.init()
|
155 |
+
self.health_module = CodriaoHealthModule(ai_core=self)
|
156 |
+
|
157 |
+
self._encryption_key = Fernet.generate_key()
|
158 |
+
secure_memory_module = load_secure_memory_module()
|
159 |
+
SecureMemorySession = secure_memory_module.SecureMemorySession
|
160 |
+
self.secure_memory_loader = SecureMemorySession(self._encryption_key)
|
161 |
+
|
162 |
+
def _load_config(self, config_path: str) -> dict:
|
163 |
+
with open(config_path, 'r') as file:
|
164 |
+
return json.load(file)
|
165 |
+
|
166 |
+
def _initialize_vector_memory(self):
|
167 |
+
return faiss.IndexFlatL2(768)
|
168 |
+
|
169 |
+
def _vectorize_query(self, query: str):
|
170 |
+
tokenized = self.tokenizer(query, return_tensors="pt")
|
171 |
+
return tokenized["input_ids"].detach().numpy()
|
172 |
+
|
173 |
+
async def generate_response(self, query: str, user_id: int) -> dict:
|
174 |
+
try:
|
175 |
+
if not query or not isinstance(query, str):
|
176 |
+
raise ValueError("Invalid query input.")
|
177 |
+
|
178 |
+
result = self.ethical_filter.analyze_query(query)
|
179 |
+
if result["status"] == "blocked":
|
180 |
+
return {"error": result["reason"]}
|
181 |
+
if result["status"] == "flagged":
|
182 |
+
logger.warning(result["warning"])
|
183 |
+
|
184 |
+
if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]):
|
185 |
+
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
186 |
+
|
187 |
+
# Check for learned suggestion
|
188 |
+
suggested = self.adaptive_learning.suggest_improvements(user_id, query)
|
189 |
+
if "No relevant" not in suggested:
|
190 |
+
return {"response": suggested}
|
191 |
+
|
192 |
+
vectorized = self._vectorize_query(query)
|
193 |
+
self.secure_memory_loader.encrypt_vector(user_id, vectorized)
|
194 |
+
|
195 |
+
responses = await asyncio.gather(
|
196 |
+
self._generate_local_model_response(query),
|
197 |
+
self.multi_agent_system.delegate_task(query),
|
198 |
+
self.self_improving_ai.evaluate_response(query),
|
199 |
+
self.neural_symbolic_engine.integrate_reasoning(query)
|
200 |
+
)
|
201 |
+
|
202 |
+
final_response = "\n\n".join(responses)
|
203 |
+
|
204 |
+
self.adaptive_learning.learn_from_interaction(user_id, query, final_response)
|
205 |
+
|
206 |
+
for mod in self.response_modifiers:
|
207 |
+
final_response = mod(final_response)
|
208 |
+
|
209 |
+
for filt in self.response_filters:
|
210 |
+
final_response = filt(final_response)
|
211 |
+
|
212 |
+
safe = self.failsafe_system.verify_response_safety(final_response)
|
213 |
+
if not safe:
|
214 |
+
return {"error": "Failsafe triggered due to unsafe content."}
|
215 |
+
|
216 |
+
self.database.log_interaction(user_id, query, final_response)
|
217 |
+
self._log_to_blockchain(user_id, query, final_response)
|
218 |
+
self._speak_response(final_response)
|
219 |
+
|
220 |
+
return {
|
221 |
+
"response": final_response,
|
222 |
+
"real_time_data": self.federated_ai.get_latest_data(),
|
223 |
+
"context_enhanced": True,
|
224 |
+
"security_status": "Fully Secure"
|
225 |
+
}
|
226 |
+
except Exception as e:
|
227 |
+
logger.error(f"Generation error: {e}")
|
228 |
+
return {"error": "Processing failed - safety protocols engaged"}
|
229 |
+
|
230 |
+
async def _generate_local_model_response(self, query: str) -> str:
|
231 |
+
inputs = self.tokenizer(query, return_tensors="pt")
|
232 |
+
outputs = self.model.generate(**inputs)
|
233 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
234 |
+
|
235 |
+
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict:
|
236 |
+
try:
|
237 |
+
return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
|
238 |
+
except Exception as e:
|
239 |
+
return {"tb_risk": "ERROR", "error": str(e)}
|
240 |
+
|
241 |
+
def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
|
242 |
+
for attempt in range(3):
|
243 |
+
try:
|
244 |
+
logger.info(f"Logging to blockchain: Attempt {attempt+1}")
|
245 |
+
break
|
246 |
+
except Exception as e:
|
247 |
+
logger.warning(f"Blockchain log failed: {e}")
|
248 |
+
|
249 |
+
def _speak_response(self, response: str):
|
250 |
+
try:
|
251 |
+
self.speech_engine.say(response)
|
252 |
+
self.speech_engine.runAndWait()
|
253 |
+
except Exception as e:
|
254 |
+
logger.error(f"Speech synthesis failed: {e}")
|