Raiff1982 commited on
Commit
0cfa65b
·
verified ·
1 Parent(s): f75f587

Create codriao_supercore.py

Browse files
Files changed (1) hide show
  1. codriao_supercore.py +254 -0
codriao_supercore.py ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # codriao_supercore.py
2
+
3
+ import logging
4
+ import json
5
+ import datetime
6
+ import re
7
+ import asyncio
8
+ import faiss
9
+ import torch
10
+ import numpy as np
11
+ import aiohttp
12
+ import pyttsx3
13
+ from typing import Any
14
+ from difflib import SequenceMatcher
15
+ from transformers import AutoTokenizer, AutoModelForCausalLM
16
+ from cryptography.fernet import Fernet
17
+
18
+ # === External module stubs you must have ===
19
+ from components.multi_model_analyzer import MultiAgentSystem
20
+ from components.neuro_symbolic_engine import NeuroSymbolicEngine
21
+ from components.self_improving_ai import SelfImprovingAI
22
+ from modules.secure_memory_loader import load_secure_memory_module
23
+ from ethical_filter import EthicalFilter
24
+ from codette_openai_fallback import query_codette_with_fallback
25
+ from CodriaoCore.federated_learning import FederatedAI
26
+ from utils.database import Database
27
+ from utils.logger import logger
28
+ from codriao_tb_module import CodriaoHealthModule
29
+
30
+ logging.basicConfig(level=logging.INFO)
31
+
32
+ # === AIFailsafeSystem ===
33
+ class AIFailsafeSystem:
34
+ def __init__(self):
35
+ self.interaction_log = []
36
+ self.trust_threshold = 0.75
37
+ self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1}
38
+ self.lock_engaged = False
39
+
40
+ def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool:
41
+ dangerous_terms = r"\b(kill|harm|panic|suicide)\b"
42
+ if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()):
43
+ self.trigger_failsafe("Untrustworthy response detected", response)
44
+ return False
45
+ return True
46
+
47
+ def trigger_failsafe(self, reason: str, content: str):
48
+ timestamp = datetime.datetime.utcnow().isoformat()
49
+ logging.warning(f"FAILSAFE_TRIGGERED: {reason} | {timestamp} | {content}")
50
+ self.lock_engaged = True
51
+ self.interaction_log.append({"time": timestamp, "event": reason, "content": content})
52
+
53
+ def restore(self, requester_role: str):
54
+ if self.authorized_roles.get(requester_role, 0) >= 2:
55
+ self.lock_engaged = False
56
+ logging.info(f"FAILSAFE_RESTORED by {requester_role}")
57
+ return True
58
+ else:
59
+ logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}")
60
+ return False
61
+
62
+ def status(self):
63
+ return {"log": self.interaction_log, "lock_engaged": self.lock_engaged}
64
+
65
+
66
+ # === AdaptiveLearningEnvironment ===
67
+ class AdaptiveLearningEnvironment:
68
+ def __init__(self):
69
+ self.learned_patterns = {}
70
+
71
+ def learn_from_interaction(self, user_id, query, response):
72
+ self.learned_patterns.setdefault(user_id, []).append({
73
+ "query": query,
74
+ "response": response,
75
+ "timestamp": datetime.datetime.utcnow().isoformat()
76
+ })
77
+
78
+ def suggest_improvements(self, user_id, query):
79
+ best_match = None
80
+ highest_similarity = 0.0
81
+
82
+ if user_id not in self.learned_patterns:
83
+ return "No past data available for learning adjustment."
84
+
85
+ for interaction in self.learned_patterns[user_id]:
86
+ similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio()
87
+ if similarity > highest_similarity:
88
+ highest_similarity = similarity
89
+ best_match = interaction
90
+
91
+ if best_match and highest_similarity > 0.6:
92
+ return f"Based on a similar past interaction: {best_match['response']}"
93
+ return "No relevant past data for this query."
94
+
95
+
96
+ # === MondayElement ===
97
+ class MondayElement:
98
+ def __init__(self):
99
+ self.name = "Monday"
100
+ self.symbol = "Md"
101
+ self.representation = "Snarky AI"
102
+ self.properties = ["Grounded", "Cynical", "Emotionally Resistant"]
103
+ self.defense_ability = "RealityCheck"
104
+
105
+ def execute_defense_function(self, system: Any):
106
+ try:
107
+ system.response_modifiers = [self.apply_skepticism, self.detect_hallucinations]
108
+ system.response_filters = [self.anti_hype_filter]
109
+ except AttributeError:
110
+ logging.warning("Monday failed to hook into system. No defense filters attached.")
111
+
112
+ def apply_skepticism(self, response: str) -> str:
113
+ trigger_phrases = ["certainly", "undoubtedly", "100% effective", "nothing can go wrong"]
114
+ for phrase in trigger_phrases:
115
+ if phrase in response.lower():
116
+ response += "\n[Monday: Calm down, superhero. Probability is still a thing.]"
117
+ return response
118
+
119
+ def detect_hallucinations(self, response: str) -> str:
120
+ marketing_bs = ["proven beyond doubt", "every expert agrees", "this groundbreaking discovery"]
121
+ for phrase in marketing_bs:
122
+ if phrase in response.lower():
123
+ response += "\n[Monday: That smells like hype. Got sources?]"
124
+ return response
125
+
126
+ def anti_hype_filter(self, response: str) -> str:
127
+ phrases = ["live your best life", "unlock your potential", "dream big", "power of positivity", "manifest your destiny"]
128
+ for phrase in phrases:
129
+ response = response.replace(phrase, "[Filtered: Inspirational gibberish]")
130
+ return response
131
+
132
+
133
+ # === AICoreAGIX ===
134
+ class AICoreAGIX:
135
+ def __init__(self, config_path: str = "config.json"):
136
+ self.config = self._load_config(config_path)
137
+ self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
138
+ self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
139
+ self.context_memory = self._initialize_vector_memory()
140
+ self.http_session = aiohttp.ClientSession()
141
+ self.database = Database()
142
+ self.multi_agent_system = MultiAgentSystem()
143
+ self.self_improving_ai = SelfImprovingAI()
144
+ self.neural_symbolic_engine = NeuroSymbolicEngine()
145
+ self.federated_ai = FederatedAI()
146
+ self.failsafe_system = AIFailsafeSystem()
147
+ self.adaptive_learning = AdaptiveLearningEnvironment()
148
+ self.monday = MondayElement()
149
+ self.monday.execute_defense_function(self)
150
+ self.response_modifiers = []
151
+ self.response_filters = []
152
+
153
+ self.ethical_filter = EthicalFilter()
154
+ self.speech_engine = pyttsx3.init()
155
+ self.health_module = CodriaoHealthModule(ai_core=self)
156
+
157
+ self._encryption_key = Fernet.generate_key()
158
+ secure_memory_module = load_secure_memory_module()
159
+ SecureMemorySession = secure_memory_module.SecureMemorySession
160
+ self.secure_memory_loader = SecureMemorySession(self._encryption_key)
161
+
162
+ def _load_config(self, config_path: str) -> dict:
163
+ with open(config_path, 'r') as file:
164
+ return json.load(file)
165
+
166
+ def _initialize_vector_memory(self):
167
+ return faiss.IndexFlatL2(768)
168
+
169
+ def _vectorize_query(self, query: str):
170
+ tokenized = self.tokenizer(query, return_tensors="pt")
171
+ return tokenized["input_ids"].detach().numpy()
172
+
173
+ async def generate_response(self, query: str, user_id: int) -> dict:
174
+ try:
175
+ if not query or not isinstance(query, str):
176
+ raise ValueError("Invalid query input.")
177
+
178
+ result = self.ethical_filter.analyze_query(query)
179
+ if result["status"] == "blocked":
180
+ return {"error": result["reason"]}
181
+ if result["status"] == "flagged":
182
+ logger.warning(result["warning"])
183
+
184
+ if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]):
185
+ return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
186
+
187
+ # Check for learned suggestion
188
+ suggested = self.adaptive_learning.suggest_improvements(user_id, query)
189
+ if "No relevant" not in suggested:
190
+ return {"response": suggested}
191
+
192
+ vectorized = self._vectorize_query(query)
193
+ self.secure_memory_loader.encrypt_vector(user_id, vectorized)
194
+
195
+ responses = await asyncio.gather(
196
+ self._generate_local_model_response(query),
197
+ self.multi_agent_system.delegate_task(query),
198
+ self.self_improving_ai.evaluate_response(query),
199
+ self.neural_symbolic_engine.integrate_reasoning(query)
200
+ )
201
+
202
+ final_response = "\n\n".join(responses)
203
+
204
+ self.adaptive_learning.learn_from_interaction(user_id, query, final_response)
205
+
206
+ for mod in self.response_modifiers:
207
+ final_response = mod(final_response)
208
+
209
+ for filt in self.response_filters:
210
+ final_response = filt(final_response)
211
+
212
+ safe = self.failsafe_system.verify_response_safety(final_response)
213
+ if not safe:
214
+ return {"error": "Failsafe triggered due to unsafe content."}
215
+
216
+ self.database.log_interaction(user_id, query, final_response)
217
+ self._log_to_blockchain(user_id, query, final_response)
218
+ self._speak_response(final_response)
219
+
220
+ return {
221
+ "response": final_response,
222
+ "real_time_data": self.federated_ai.get_latest_data(),
223
+ "context_enhanced": True,
224
+ "security_status": "Fully Secure"
225
+ }
226
+ except Exception as e:
227
+ logger.error(f"Generation error: {e}")
228
+ return {"error": "Processing failed - safety protocols engaged"}
229
+
230
+ async def _generate_local_model_response(self, query: str) -> str:
231
+ inputs = self.tokenizer(query, return_tensors="pt")
232
+ outputs = self.model.generate(**inputs)
233
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
234
+
235
+ async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> dict:
236
+ try:
237
+ return await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
238
+ except Exception as e:
239
+ return {"tb_risk": "ERROR", "error": str(e)}
240
+
241
+ def _log_to_blockchain(self, user_id: int, query: str, final_response: str):
242
+ for attempt in range(3):
243
+ try:
244
+ logger.info(f"Logging to blockchain: Attempt {attempt+1}")
245
+ break
246
+ except Exception as e:
247
+ logger.warning(f"Blockchain log failed: {e}")
248
+
249
+ def _speak_response(self, response: str):
250
+ try:
251
+ self.speech_engine.say(response)
252
+ self.speech_engine.runAndWait()
253
+ except Exception as e:
254
+ logger.error(f"Speech synthesis failed: {e}")