Spaces:
Runtime error
Runtime error
import librosa | |
import numpy as np | |
import logging | |
from tensorflow.keras.models import load_model | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class TBAudioProcessor: | |
"""Processes real cough audio for TB detection""" | |
def __init__(self, model_path="tb_cough_model.h5"): | |
try: | |
self.model = load_model(model_path) | |
logger.info("TB Audio Processor Model Loaded Successfully.") | |
except Exception as e: | |
logger.error(f"Failed to load TB Audio Model: {e}") | |
self.model = None | |
def process_audio(self, audio_path): | |
"""Analyze cough audio and return TB risk assessment.""" | |
if not self.model: | |
return {"error": "Model not loaded. Cannot process audio."} | |
try: | |
y, sr = librosa.load(audio_path, sr=16000) | |
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40) | |
mfccs = np.mean(mfccs.T, axis=0).reshape(1, -1) # Flatten MFCCs | |
prediction = self.model.predict(mfccs) | |
confidence = float(prediction[0][0]) | |
result = "TB Detected" if confidence > 0.5 else "No TB" | |
return { | |
"result": result, | |
"confidence": confidence | |
} | |
except Exception as e: | |
logger.error(f"Error processing audio: {e}") | |
return {"error": "Audio processing failed."} | |