codriao / modules /CodriaoCore.py
Raiff1982's picture
Update modules/CodriaoCore.py
75c4c21 verified
import aiohttp
import json
import logging
import torch
import faiss
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Dict, Any
from cryptography.fernet import Fernet
from jwt import encode, decode, ExpiredSignatureError
from datetime import datetime, timedelta
import os
import speech_recognition as sr
import pyttsx3
from deep_translator import GoogleTranslator
# Codette's legacy modules (secured)
from components.adaptive_learning import AdaptiveLearningEnvironment
from components.real_time_data import RealTimeDataIntegrator
from components.sentiment_analysis import EnhancedSentimentAnalyzer
from components.self_improving_ai import SelfImprovingAI
from components.multi_model_analyzer import MultiAgentSystem
# Codriao's enhanced modules
from codriao_tb_module import CodriaoHealthModule
from secure_memory_loader import load_secure_memory_module
from ethical_filter import EthicalFilter
from results_store import save_result
# Utilities
from utils.database import Database
from utils.logger import logger
from utils.secure_memory_loader import load_secure_memory_module
class CodriaoCore:
def __init__(self, config_path: str = "config.json"):
self.config = self._load_config(config_path)
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
self.models = self._initialize_models()
self.context_memory = self._initialize_vector_memory()
self._encryption_key = self.config["security_settings"]["encryption_key"].encode()
self.jwt_secret = self.config["security_settings"]["jwt_secret"]
self.http_session = aiohttp.ClientSession()
self.database = Database()
# 🧠 Replace static SecureMemory with dynamic, temp version
SecureMemorySession = load_secure_memory_module()
self.secure_memory = SecureMemorySession(self._encryption_key)
# Cognitive & ethical subsystems
self.sentiment_analyzer = EnhancedSentimentAnalyzer()
self.self_improving_ai = SelfImprovingAI()
self.adaptive_learning = AdaptiveLearningEnvironment()
self.data_fetcher = RealTimeDataIntegrator()
self.multi_agent_system = MultiAgentSystem()
self.ethical_filter = EthicalFilter()
self.secure_memory = SecureMemorySession(self._encryption_key)
self.speech_engine = pyttsx3.init()
self.health_module = CodriaoHealthModule(ai_core=self)
def _load_config(self, config_path: str) -> dict:
with open(config_path, 'r') as file:
return json.load(file)
def _initialize_models(self):
return {
"base_model": self.model,
"tokenizer": self.tokenizer
}
def _initialize_vector_memory(self):
return faiss.IndexFlatL2(768)
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
try:
# Ethical Safety
check = self.ethical_filter.analyze_query(query)
if check["status"] == "blocked":
return {"error": check["reason"]}
if check["status"] == "flagged":
logger.warning(check["warning"])
# Optional: Trigger TB diagnostics by user request
if any(trigger in query.lower() for trigger in ["tb check", "run tb diagnostics", "tb test"]):
result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
return result
vectorized_query = self._vectorize_query(query)
self.secure_memory.encrypt_vector(user_id, vectorized_query)
model_response = await self._generate_local_model_response(query)
agent_response = self.multi_agent_system.delegate_task(query)
sentiment = self.sentiment_analyzer.detailed_analysis(query)
self_reflection = self.self_improving_ai.evaluate_response(query, model_response)
real_time = self.data_fetcher.fetch_latest_data()
final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}"
self.database.log_interaction(user_id, query, final_response)
self._speak_response(final_response)
return {
"response": final_response,
"sentiment": sentiment,
"real_time_data": real_time,
"security_level": self._evaluate_risk(final_response),
"token_optimized": True
}
except Exception as e:
logger.error(f"Response generation failed: {e}")
return {"error": "Codriao encountered a critical reasoning issue."}
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int, language="en") -> Dict[str, Any]:
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id)
result_filename = save_result(result)
result["shareable_link"] = f"https://huggingface.co/spaces/Raiff1982/codriao/blob/main/results/{result_filename}"
# Auto-escalation for HIGH risk
if result["tb_risk"] == "HIGH":
result["next_steps"] = "⚠️ Immediate follow-up required. Please visit a healthcare provider."
elif result["tb_risk"] == "MEDIUM":
result["next_steps"] = "🔍 Consider additional testing for confirmation."
# Multi-language support
if language != "en":
try:
translated_result = GoogleTranslator(source="auto", target=language).translate(json.dumps(result))
return json.loads(translated_result)
except Exception as e:
result["translation_error"] = str(e)
return result
def _evaluate_risk(self, response: str) -> str:
if "critical" in response.lower():
return "HIGH"
elif "concern" in response.lower():
return "MEDIUM"
else:
return "LOW"
def _speak_response(self, response: str):
if self.config["speech_settings"]["emotion_adaptive"]:
try:
self.speech_engine.say(response)
self.speech_engine.runAndWait()
except:
pass # Ignore if running in a non-audio environment
def generate_jwt(self, user_id: int):
payload = {
"user_id": user_id,
"exp": datetime.utcnow() + timedelta(hours=1)
}
return encode(payload, self.jwt_secret, algorithm="HS256")
def verify_jwt(self, token: str):
try:
return decode(token, self.jwt_secret, algorithms=["HS256"])
except ExpiredSignatureError:
return None
async def shutdown(self):
await self.http_session.close()