codriao / codriao_tb_module.py
Raiff1982's picture
Create codriao_tb_module.py
a4f8e39 verified
raw
history blame
1.9 kB
import asyncio
import logging
from ai_system.ai_core import AICore
from tb_image_processor import TBImageProcessor
from tb_audio_processor import TBAudioProcessor
logger = logging.getLogger(__name__)
class CodriaoHealthModule:
"""Embedded compassionate TB detection within Codriao's architecture"""
def __init__(self, ai_core: AICore):
self.ai_core = ai_core
self.image_processor = TBImageProcessor()
self.audio_processor = TBAudioProcessor()
async def evaluate_tb_risk(self, image_path: str, audio_path: str, user_id: int):
image_result, image_confidence = self.image_processor.process_image(image_path)
audio_result, audio_confidence = self.audio_processor.process_audio(audio_path)
if "Error" in [image_result, audio_result]:
tb_risk = "UNKNOWN"
elif image_result == "TB Detected" and audio_result == "TB Detected":
tb_risk = "HIGH"
elif image_result == "TB Detected" or audio_result == "TB Detected":
tb_risk = "MEDIUM"
else:
tb_risk = "LOW"
combined_query = (
f"Medical Analysis Input: TB image: {image_result} (confidence {image_confidence:.2f}), "
f"Audio: {audio_result} (confidence {audio_confidence:.2f}). Risk Level: {tb_risk}. "
f"Please respond with a kind, ethical interpretation and recommended next steps."
)
response = await self.ai_core.generate_response(combined_query, user_id)
return {
"tb_risk": tb_risk,
"image_analysis": {"result": image_result, "confidence": image_confidence},
"audio_analysis": {"result": audio_result, "confidence": audio_confidence},
"ethical_analysis": response.get("response"),
"explanation": response.get("explanation"),
"system_health": response.get("health"),
}