Spaces:
Runtime error
Runtime error
import asyncio | |
import logging | |
from ai_system.ai_core import AICore | |
from tb_image_processor import TBImageProcessor | |
from tb_audio_processor import TBAudioProcessor | |
logger = logging.getLogger(__name__) | |
class CodriaoHealthModule: | |
"""Embedded compassionate TB detection within Codriao's architecture""" | |
def __init__(self, ai_core: AICore): | |
self.ai_core = ai_core | |
self.image_processor = TBImageProcessor() | |
self.audio_processor = TBAudioProcessor() | |
async def evaluate_tb_risk(self, image_path: str, audio_path: str, user_id: int): | |
image_result, image_confidence = self.image_processor.process_image(image_path) | |
audio_result, audio_confidence = self.audio_processor.process_audio(audio_path) | |
if "Error" in [image_result, audio_result]: | |
tb_risk = "UNKNOWN" | |
elif image_result == "TB Detected" and audio_result == "TB Detected": | |
tb_risk = "HIGH" | |
elif image_result == "TB Detected" or audio_result == "TB Detected": | |
tb_risk = "MEDIUM" | |
else: | |
tb_risk = "LOW" | |
combined_query = ( | |
f"Medical Analysis Input: TB image: {image_result} (confidence {image_confidence:.2f}), " | |
f"Audio: {audio_result} (confidence {audio_confidence:.2f}). Risk Level: {tb_risk}. " | |
f"Please respond with a kind, ethical interpretation and recommended next steps." | |
) | |
response = await self.ai_core.generate_response(combined_query, user_id) | |
return { | |
"tb_risk": tb_risk, | |
"image_analysis": {"result": image_result, "confidence": image_confidence}, | |
"audio_analysis": {"result": audio_result, "confidence": audio_confidence}, | |
"ethical_analysis": response.get("response"), | |
"explanation": response.get("explanation"), | |
"system_health": response.get("health"), | |
} |