Spaces:
Runtime error
Runtime error
import aiohttp | |
import json | |
import logging | |
import torch | |
import faiss | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from typing import List, Dict, Any | |
from cryptography.fernet import Fernet | |
from jwt import encode, decode, ExpiredSignatureError | |
from datetime import datetime, timedelta | |
#blockchain_module | |
import speech_recognition as sr | |
import pyttsx3 | |
import os | |
from CodriaoCore.multi_agent import MultiAgentSystem | |
from CodriaoCore.ar_integration import ARDataOverlay | |
from CodriaoCore.neural_symbolic import NeuralSymbolicProcessor | |
from CodriaoCore.federated_learning import FederatedAI | |
from database import Database | |
from logger import logger | |
from secure_memory import SecureMemorySession | |
from codriao_tb_module import CodriaoHealthModule | |
class AICoreAGIX: | |
def __init__(self, config_path: str = "config.json"): | |
self.ethical_filter = EthicalFilter() | |
self.config = self._load_config(config_path) | |
self.models = self._initialize_models() | |
self.context_memory = self._initialize_vector_memory() | |
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"]) | |
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"]) | |
self.http_session = aiohttp.ClientSession() | |
self.database = Database() | |
self.multi_agent_system = MultiAgentSystem() | |
self.self_reflective_ai = SelfReflectiveAI() | |
self.ar_overlay = ARDataOverlay() | |
self.neural_symbolic_processor = NeuralSymbolicProcessor() | |
self.federated_ai = FederatedAI() | |
# Security + Memory | |
key = os.environ.get("CODRIAO_SECRET_KEY").encode() | |
self._encryption_key = key | |
self.secure_memory = SecureMemorySession(self._encryption_key) | |
self.speech_engine = pyttsx3.init() | |
self.health_module = CodriaoHealthModule(ai_core=self) | |
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]: | |
try: | |
# Ethical Safety Check | |
result = self.ethical_filter.analyze_query(query) | |
if result["status"] == "blocked": | |
return {"error": result["reason"]} | |
if result["status"] == "flagged": | |
logger.warning(result["warning"]) | |
# Check if user explicitly requests TB analysis | |
if any(phrase in query.lower() for phrase in ["tb check", "analyze my tb", "run tb diagnostics", "tb test"]): | |
result = await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id) | |
return { | |
"response": result["ethical_analysis"], | |
"explanation": result["explanation"], | |
"tb_risk": result["tb_risk"], | |
"image_analysis": result["image_analysis"], | |
"audio_analysis": result["audio_analysis"], | |
"system_health": result["system_health"] | |
} | |
# Vectorize and encrypt | |
vectorized_query = self._vectorize_query(query) | |
self.secure_memory.encrypt_vector(user_id, vectorized_query) | |
# (Optional) retrieve memory | |
user_vectors = self.secure_memory.decrypt_vectors(user_id) | |
# Main AI processing | |
model_response = await self._generate_local_model_response(query) | |
agent_response = self.multi_agent_system.delegate_task(query) | |
self_reflection = self.self_reflective_ai.evaluate_response(query, model_response) | |
ar_data = self.ar_overlay.fetch_augmented_data(query) | |
neural_reasoning = self.neural_symbolic_processor.process_query(query) | |
final_response = f"{model_response}\n\n{agent_response}\n\n{self_reflection}\n\nAR Insights: {ar_data}\n\nLogic: {neural_reasoning}" | |
self.database.log_interaction(user_id, query, final_response) | |
#blockchain_module.store_interaction(user_id, query, final_response) | |
self._speak_response(final_response) | |
return { | |
"response": final_response, | |
"real_time_data": self.federated_ai.get_latest_data(), | |
"context_enhanced": True, | |
"security_status": "Fully Secure" | |
} | |
except Exception as e: | |
logger.error(f"Response generation failed: {e}") | |
return {"error": "Processing failed - safety protocols engaged"} | |
async def run_tb_diagnostics(self, image_path: str, audio_path: str, user_id: int) -> Dict[str, Any]: | |
"""Only runs TB analysis if explicitly requested.""" | |
try: | |
result = await self.health_module.evaluate_tb_risk(image_path, audio_path, user_id) | |
logger.info(f"TB Diagnostic Result: {result}") | |
return result | |
except Exception as e: | |
logger.error(f"TB diagnostics failed: {e}") | |
return { | |
"tb_risk": "ERROR", | |
"error": str(e), | |
"image_analysis": {}, | |
"audio_analysis": {}, | |
"ethical_analysis": "Unable to complete TB diagnostic.", | |
"explanation": None, | |
"system_health": None | |
} | |
def _load_config(self, config_path: str) -> dict: | |
with open(config_path, 'r') as file: | |
return json.load(file) | |
def _initialize_models(self): | |
return { | |
"agix_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]), | |
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"]) | |
} | |
def _initialize_vector_memory(self): | |
return faiss.IndexFlatL2(768) | |
def _vectorize_query(self, query: str): | |
tokenized = self.tokenizer(query, return_tensors="pt") | |
return tokenized["input_ids"].detach().numpy() | |
async def _generate_local_model_response(self, query: str) -> str: | |
inputs = self.tokenizer(query, return_tensors="pt") | |
outputs = self.model.generate(**inputs) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
def _speak_response(self, response: str): | |
self.speech_engine.say(response) | |
self.speech_engine.runAndWait() |