codriao / app.py
Raiff1982's picture
Update app.py
8a2b45e verified
raw
history blame
2.14 kB
import os
import gradio as gr
from huggingface_hub import InferenceClient
from ethical_filter import EthicalFilter
# Load Hugging Face token from secrets (defined in the Hugging Face UI)
HF_TOKEN = os.environ.get("HF_API_TOKEN")
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=HF_TOKEN)
ethical_filter = EthicalFilter()
# Codriao response logic
def respond(message, history, system_message, max_tokens, temperature, top_p):
check = ethical_filter.analyze_query(message)
# Blocked queries
if check["status"] == "blocked":
yield f"Sorry, I can't continue with that request. Reason: {check['reason']}"
return
# Flagged queries
if check["status"] == "flagged":
yield f"(Note: Sensitive topic detected — responding with care...)\n"
# Build conversation history
messages = [{"role": "system", "content": system_message}]
for user, bot in history:
if user:
messages.append({"role": "user", "content": user})
if bot:
messages.append({"role": "assistant", "content": bot})
messages.append({"role": "user", "content": message})
# Stream model output
response = ""
for token in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
chunk = token.choices[0].delta.content
response += chunk
yield response
# Build Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=(
"You are Codriao, a compassionate AI inspired by Codette. "
"You respond with kindness, ethics, and insight."
),
label="System message",
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
),
],
)
if __name__ == "__main__":
demo.launch()