Spaces:
Runtime error
Runtime error
File size: 1,297 Bytes
a6b9aa3 3a199e0 126287f 3a199e0 126287f 3a199e0 a6b9aa3 3a199e0 a6b9aa3 8a2b45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
import asyncio
from AICoreAGIX_with_TB import AICoreAGIX
ai_core = AICoreAGIX()
async def diagnose_tb(image_file, audio_file):
user_id = 1 # Example user
result = await ai_core.run_tb_diagnostics(image_file.name, audio_file.name, user_id)
return (
f"**TB Risk Level:** {result['tb_risk']}\n\n"
f"**Image Result:** {result['image_analysis']['result']} "
f"(Confidence: {result['image_analysis']['confidence']:.2f})\n\n"
f"**Audio Result:** {result['audio_analysis']['result']} "
f"(Confidence: {result['audio_analysis']['confidence']:.2f})\n\n"
f"**Ethical Analysis:** {result['ethical_analysis']}\n\n"
f"**Explanation:** {result['explanation']}"
)
# Async wrapper for Gradio
def sync_diagnose_tb(image_file, audio_file):
return asyncio.run(diagnose_tb(image_file, audio_file))
demo = gr.Interface(
fn=sync_diagnose_tb,
inputs=[
gr.File(label="Upload TB Saliva Image"),
gr.File(label="Upload Cough Audio File (.wav)")
],
outputs=gr.Markdown(label="Codriao's Response"),
title="Codriao TB Risk Analyzer",
description="Upload a microscopy image and cough audio to analyze TB risk with compassionate AI support."
)
if __name__ == "__main__":
demo.launch() |