Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,17 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
-
import copy
|
4 |
-
import inspect
|
5 |
-
import warnings
|
6 |
-
import json
|
7 |
import logging
|
|
|
8 |
from pathlib import Path
|
9 |
-
from typing import Any, Literal, Optional, Union, List
|
10 |
-
from cryptography.fernet import Fernet
|
11 |
from pydantic import BaseModel, Field
|
12 |
-
from gradio import Interface, Blocks
|
13 |
-
from gradio.components import Component
|
14 |
from gradio.data_classes import FileData, GradioModel, GradioRootModel
|
15 |
-
from gradio.events import Events
|
16 |
-
from gradio.exceptions import Error
|
17 |
-
from gradio_client import utils as client_utils
|
18 |
from transformers import pipeline
|
19 |
from diffusers import DiffusionPipeline
|
20 |
import torch
|
21 |
import gradio as gr
|
22 |
|
23 |
-
#
|
24 |
image_model = DiffusionPipeline.from_pretrained(
|
25 |
"black-forest-labs/FLUX.1-dev",
|
26 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
@@ -28,7 +19,7 @@ image_model = DiffusionPipeline.from_pretrained(
|
|
28 |
)
|
29 |
image_model.enable_model_cpu_offload()
|
30 |
|
31 |
-
# Define data models
|
32 |
class FileDataDict(BaseModel):
|
33 |
path: str
|
34 |
url: Optional[str] = None
|
@@ -36,7 +27,6 @@ class FileDataDict(BaseModel):
|
|
36 |
orig_name: Optional[str] = None
|
37 |
mime_type: Optional[str] = None
|
38 |
is_stream: Optional[bool] = False
|
39 |
-
|
40 |
class Config:
|
41 |
arbitrary_types_allowed = True
|
42 |
|
@@ -45,7 +35,6 @@ class MessageDict(BaseModel):
|
|
45 |
role: Literal["user", "assistant", "system"]
|
46 |
metadata: Optional[dict] = None
|
47 |
options: Optional[List[dict]] = None
|
48 |
-
|
49 |
class Config:
|
50 |
arbitrary_types_allowed = True
|
51 |
|
@@ -54,7 +43,6 @@ class ChatMessage(GradioModel):
|
|
54 |
content: Union[str, FileData, Component]
|
55 |
metadata: dict = Field(default_factory=dict)
|
56 |
options: Optional[List[dict]] = None
|
57 |
-
|
58 |
class Config:
|
59 |
arbitrary_types_allowed = True
|
60 |
|
@@ -65,38 +53,35 @@ class ChatbotDataMessages(GradioRootModel):
|
|
65 |
class UniversalReasoning:
|
66 |
def __init__(self, config):
|
67 |
self.config = config
|
68 |
-
self.
|
69 |
-
self.
|
70 |
|
71 |
-
# Load models with explicit truncation
|
72 |
self.deepseek_model = pipeline(
|
73 |
-
"text-classification",
|
74 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
75 |
truncation=True
|
76 |
-
)
|
77 |
|
78 |
self.davinci_model = pipeline(
|
79 |
-
"text2text-generation",
|
80 |
model="t5-small",
|
81 |
truncation=True
|
82 |
-
)
|
83 |
|
84 |
self.additional_model = pipeline(
|
85 |
-
"text-generation",
|
86 |
model="EleutherAI/gpt-neo-125M",
|
87 |
truncation=True
|
88 |
-
)
|
89 |
|
90 |
-
# Use earlier-defined image model
|
91 |
self.image_model = image_model
|
92 |
|
93 |
async def generate_response(self, question: str) -> str:
|
94 |
-
self.context_history.append(question)
|
95 |
sentiment_score = self.analyze_sentiment(question)
|
96 |
-
|
97 |
deepseek_response = self.deepseek_model(question)
|
98 |
-
davinci_response = self.davinci_model(question, max_length=50
|
99 |
-
additional_response = self.additional_model(question, max_length=100
|
100 |
|
101 |
responses = [
|
102 |
f"Sentiment score: {sentiment_score}",
|
@@ -104,7 +89,6 @@ class UniversalReasoning:
|
|
104 |
f"T5 Response: {davinci_response}",
|
105 |
f"Additional Model Response: {additional_response}"
|
106 |
]
|
107 |
-
|
108 |
return "\n\n".join(responses)
|
109 |
|
110 |
def generate_image(self, prompt: str):
|
@@ -115,17 +99,17 @@ class UniversalReasoning:
|
|
115 |
guidance_scale=3.5,
|
116 |
num_inference_steps=50,
|
117 |
max_sequence_length=512,
|
118 |
-
generator=torch.Generator(
|
119 |
).images[0]
|
120 |
image.save("flux-dev.png")
|
121 |
return image
|
122 |
|
123 |
def analyze_sentiment(self, text: str) -> list:
|
124 |
-
sentiment_score = self.sentiment_analyzer(text)
|
125 |
logging.info(f"Sentiment analysis result: {sentiment_score}")
|
126 |
return sentiment_score
|
127 |
|
128 |
-
# Main
|
129 |
class MultimodalChatbot(Component):
|
130 |
def __init__(
|
131 |
self,
|
@@ -134,7 +118,6 @@ class MultimodalChatbot(Component):
|
|
134 |
render: bool = True,
|
135 |
log_file: Optional[Path] = None,
|
136 |
):
|
137 |
-
# Ensure value is initialized as an empty list if None
|
138 |
value = value or []
|
139 |
super().__init__(label=label, value=value)
|
140 |
self.log_file = log_file
|
@@ -143,20 +126,15 @@ class MultimodalChatbot(Component):
|
|
143 |
self.universal_reasoning = UniversalReasoning({})
|
144 |
|
145 |
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
|
146 |
-
|
147 |
-
if payload is None:
|
148 |
-
return []
|
149 |
-
return payload.root
|
150 |
|
151 |
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
|
152 |
-
# Ensure messages is a valid list
|
153 |
messages = messages or []
|
154 |
return ChatbotDataMessages(root=messages)
|
155 |
|
156 |
-
#
|
157 |
class HuggingFaceChatbot:
|
158 |
def __init__(self):
|
159 |
-
# Initialize MultimodalChatbot with a default empty list
|
160 |
self.chatbot = MultimodalChatbot(value=[])
|
161 |
|
162 |
def setup_interface(self):
|
@@ -186,7 +164,7 @@ class HuggingFaceChatbot:
|
|
186 |
interface = self.setup_interface()
|
187 |
interface.launch()
|
188 |
|
189 |
-
#
|
190 |
if __name__ == "__main__":
|
191 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
192 |
chatbot = HuggingFaceChatbot()
|
|
|
1 |
import os
|
2 |
import asyncio
|
|
|
|
|
|
|
|
|
3 |
import logging
|
4 |
+
from typing import Optional, List, Union, Literal
|
5 |
from pathlib import Path
|
|
|
|
|
6 |
from pydantic import BaseModel, Field
|
7 |
+
from gradio import Interface, Blocks, Component
|
|
|
8 |
from gradio.data_classes import FileData, GradioModel, GradioRootModel
|
|
|
|
|
|
|
9 |
from transformers import pipeline
|
10 |
from diffusers import DiffusionPipeline
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
|
14 |
+
# Load gated image model
|
15 |
image_model = DiffusionPipeline.from_pretrained(
|
16 |
"black-forest-labs/FLUX.1-dev",
|
17 |
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
|
|
19 |
)
|
20 |
image_model.enable_model_cpu_offload()
|
21 |
|
22 |
+
# Define data models
|
23 |
class FileDataDict(BaseModel):
|
24 |
path: str
|
25 |
url: Optional[str] = None
|
|
|
27 |
orig_name: Optional[str] = None
|
28 |
mime_type: Optional[str] = None
|
29 |
is_stream: Optional[bool] = False
|
|
|
30 |
class Config:
|
31 |
arbitrary_types_allowed = True
|
32 |
|
|
|
35 |
role: Literal["user", "assistant", "system"]
|
36 |
metadata: Optional[dict] = None
|
37 |
options: Optional[List[dict]] = None
|
|
|
38 |
class Config:
|
39 |
arbitrary_types_allowed = True
|
40 |
|
|
|
43 |
content: Union[str, FileData, Component]
|
44 |
metadata: dict = Field(default_factory=dict)
|
45 |
options: Optional[List[dict]] = None
|
|
|
46 |
class Config:
|
47 |
arbitrary_types_allowed = True
|
48 |
|
|
|
53 |
class UniversalReasoning:
|
54 |
def __init__(self, config):
|
55 |
self.config = config
|
56 |
+
self.context_history = []
|
57 |
+
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
58 |
|
|
|
59 |
self.deepseek_model = pipeline(
|
60 |
+
"text-classification",
|
61 |
model="distilbert-base-uncased-finetuned-sst-2-english",
|
62 |
truncation=True
|
63 |
+
)
|
64 |
|
65 |
self.davinci_model = pipeline(
|
66 |
+
"text2text-generation",
|
67 |
model="t5-small",
|
68 |
truncation=True
|
69 |
+
)
|
70 |
|
71 |
self.additional_model = pipeline(
|
72 |
+
"text-generation",
|
73 |
model="EleutherAI/gpt-neo-125M",
|
74 |
truncation=True
|
75 |
+
)
|
76 |
|
|
|
77 |
self.image_model = image_model
|
78 |
|
79 |
async def generate_response(self, question: str) -> str:
|
80 |
+
self.context_history.append(question)
|
81 |
sentiment_score = self.analyze_sentiment(question)
|
|
|
82 |
deepseek_response = self.deepseek_model(question)
|
83 |
+
davinci_response = self.davinci_model(question, max_length=50)
|
84 |
+
additional_response = self.additional_model(question, max_length=100)
|
85 |
|
86 |
responses = [
|
87 |
f"Sentiment score: {sentiment_score}",
|
|
|
89 |
f"T5 Response: {davinci_response}",
|
90 |
f"Additional Model Response: {additional_response}"
|
91 |
]
|
|
|
92 |
return "\n\n".join(responses)
|
93 |
|
94 |
def generate_image(self, prompt: str):
|
|
|
99 |
guidance_scale=3.5,
|
100 |
num_inference_steps=50,
|
101 |
max_sequence_length=512,
|
102 |
+
generator=torch.Generator('cpu').manual_seed(0)
|
103 |
).images[0]
|
104 |
image.save("flux-dev.png")
|
105 |
return image
|
106 |
|
107 |
def analyze_sentiment(self, text: str) -> list:
|
108 |
+
sentiment_score = self.sentiment_analyzer(text)
|
109 |
logging.info(f"Sentiment analysis result: {sentiment_score}")
|
110 |
return sentiment_score
|
111 |
|
112 |
+
# Main Component
|
113 |
class MultimodalChatbot(Component):
|
114 |
def __init__(
|
115 |
self,
|
|
|
118 |
render: bool = True,
|
119 |
log_file: Optional[Path] = None,
|
120 |
):
|
|
|
121 |
value = value or []
|
122 |
super().__init__(label=label, value=value)
|
123 |
self.log_file = log_file
|
|
|
126 |
self.universal_reasoning = UniversalReasoning({})
|
127 |
|
128 |
def preprocess(self, payload: Optional[ChatbotDataMessages]) -> List[MessageDict]:
|
129 |
+
return payload.root if payload else []
|
|
|
|
|
|
|
130 |
|
131 |
def postprocess(self, messages: Optional[List[MessageDict]]) -> ChatbotDataMessages:
|
|
|
132 |
messages = messages or []
|
133 |
return ChatbotDataMessages(root=messages)
|
134 |
|
135 |
+
# Gradio Interface
|
136 |
class HuggingFaceChatbot:
|
137 |
def __init__(self):
|
|
|
138 |
self.chatbot = MultimodalChatbot(value=[])
|
139 |
|
140 |
def setup_interface(self):
|
|
|
164 |
interface = self.setup_interface()
|
165 |
interface.launch()
|
166 |
|
167 |
+
# Standalone launch
|
168 |
if __name__ == "__main__":
|
169 |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
170 |
chatbot = HuggingFaceChatbot()
|