Raiff1982 commited on
Commit
d6a4b5c
·
verified ·
1 Parent(s): c951da6

Update final_codettes_chatbot.py

Browse files
Files changed (1) hide show
  1. final_codettes_chatbot.py +195 -127
final_codettes_chatbot.py CHANGED
@@ -1,135 +1,203 @@
1
- import os
2
  import asyncio
 
 
3
  import logging
4
- from typing import Optional, List, Union, Literal
5
- from pathlib import Path
6
- from pydantic import BaseModel, Field
7
- from gradio import Interface, Blocks
8
- from gradio.components import Textbox, Image
9
- from gradio.data_classes import FileData, GradioModel, GradioRootModel
10
- from transformers import pipeline
11
- from diffusers import DiffusionPipeline
12
- import torch
13
- import gradio as gr
14
-
15
- # Load gated image model securely
16
- hf_token = os.getenv("HUGGINGFACE_TOKEN")
17
- if not hf_token:
18
- raise RuntimeError("Missing HUGGINGFACE_TOKEN env var for gated model access.")
19
-
20
- image_model = DiffusionPipeline.from_pretrained(
21
- "black-forest-labs/FLUX.1-dev",
22
- torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
23
- use_auth_token=hf_token
 
 
 
 
 
 
 
 
 
 
24
  )
25
- image_model.enable_model_cpu_offload()
26
-
27
- # Data models
28
- class FileDataDict(BaseModel):
29
- path: str
30
- url: Optional[str] = None
31
- size: Optional[int] = None
32
- orig_name: Optional[str] = None
33
- mime_type: Optional[str] = None
34
- is_stream: Optional[bool] = False
35
- class Config:
36
- arbitrary_types_allowed = True
37
-
38
- class MessageDict(BaseModel):
39
- content: Union[str, FileDataDict, tuple, str]
40
- role: Literal["user", "assistant", "system"]
41
- metadata: Optional[dict] = None
42
- options: Optional[List[dict]] = None
43
- class Config:
44
- arbitrary_types_allowed = True
45
-
46
- class ChatMessage(GradioModel):
47
- role: Literal["user", "assistant", "system"]
48
- content: Union[str, FileData, str]
49
- metadata: dict = Field(default_factory=dict)
50
- options: Optional[List[dict]] = None
51
- class Config:
52
- arbitrary_types_allowed = True
53
-
54
- class ChatbotDataMessages(GradioRootModel):
55
- root: List[ChatMessage]
56
-
57
- # Reasoning Engine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  class UniversalReasoning:
59
  def __init__(self, config):
60
  self.config = config
61
- self.context_history = []
62
- self.sentiment_analyzer = pipeline("sentiment-analysis")
63
- self.deepseek_model = pipeline("text-classification", model="distilbert-base-uncased-finetuned-sst-2-english")
64
- self.davinci_model = pipeline("text2text-generation", model="t5-small")
65
- self.additional_model = pipeline("text-generation", model="EleutherAI/gpt-neo-125M")
66
- self.image_model = image_model
67
-
68
- async def generate_response(self, question: str) -> str:
69
- self.context_history.append(question)
70
- sentiment_score = self.analyze_sentiment(question)
71
- deepseek_response = self.deepseek_model(question)
72
- davinci_response = self.davinci_model(question, max_length=50)
73
- additional_response = self.additional_model(question, max_length=100)
74
-
75
- responses = [
76
- f"Sentiment score: {sentiment_score}",
77
- f"DeepSeek Response: {deepseek_response}",
78
- f"T5 Response: {davinci_response}",
79
- f"GPT-Neo Response: {additional_response}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
  ]
81
- return "\n\n".join(responses)
82
-
83
- def generate_image(self, prompt: str):
84
- image = self.image_model(
85
- prompt,
86
- height=1024,
87
- width=1024,
88
- guidance_scale=3.5,
89
- num_inference_steps=50,
90
- generator=torch.Generator('cpu').manual_seed(0)
91
- ).images[0]
92
- image.save("flux-dev.png")
93
- return image
94
-
95
- def analyze_sentiment(self, text: str) -> list:
96
- sentiment_score = self.sentiment_analyzer(text)
97
- logging.info(f"Sentiment analysis result: {sentiment_score}")
98
- return sentiment_score
99
-
100
- # Main Gradio App
101
- class HuggingFaceChatbot:
102
- def __init__(self):
103
- self.universal_reasoning = UniversalReasoning(config={})
104
-
105
- def setup_interface(self):
106
- async def chatbot_logic(input_text: str) -> str:
107
- return await self.universal_reasoning.generate_response(input_text)
108
-
109
- def image_logic(prompt: str):
110
- return self.universal_reasoning.generate_image(prompt)
111
-
112
- text_interface = Interface(
113
- fn=chatbot_logic,
114
- inputs=Textbox(label="Ask anything"),
115
- outputs=Textbox(label="Reasoned Answer"),
116
- title="🧠 Codettes-BlackForest Chatbot"
117
- )
118
-
119
- image_interface = Interface(
120
- fn=image_logic,
121
- inputs=Textbox(label="Describe an image"),
122
- outputs=Image(label="Generated Image"),
123
- title="🎨 Image Generator (FLUX.1-dev)"
124
- )
125
-
126
- return Blocks([text_interface, image_interface])
127
-
128
- def launch(self):
129
- app = self.setup_interface()
130
- app.launch()
131
 
132
- # Launch the app
133
- if __name__ == "__main__":
134
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
135
- HuggingFaceChatbot().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import asyncio
2
+ import json
3
+ import os
4
  import logging
5
+ import sqlite3
6
+ from typing import List
7
+
8
+ # Ensure vaderSentiment is installed
9
+ try:
10
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
11
+ except ModuleNotFoundError:
12
+ import subprocess
13
+ import sys
14
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
15
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
16
+
17
+ # Ensure nltk is installed and download required data
18
+ try:
19
+ import nltk
20
+ from nltk.tokenize import word_tokenize
21
+ nltk.download('punkt', quiet=True)
22
+ except ImportError:
23
+ import subprocess
24
+ import sys
25
+ subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
26
+ import nltk
27
+ from nltk.tokenize import word_tokenize
28
+ nltk.download('punkt', quiet=True)
29
+
30
+ # Import perspectives
31
+ from perspectives import (
32
+ NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
33
+ NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
34
+ MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
35
  )
36
+
37
+ def setup_logging(config):
38
+ if config.get('logging_enabled', True):
39
+ log_level = config.get('log_level', 'DEBUG').upper()
40
+ numeric_level = getattr(logging, log_level, logging.DEBUG)
41
+ logging.basicConfig(
42
+ filename='codette_reasoning.log',
43
+ level=numeric_level,
44
+ format='%(asctime)s - %(levelname)s - %(message)s'
45
+ )
46
+ else:
47
+ logging.disable(logging.CRITICAL)
48
+
49
+ def load_json_config(file_path):
50
+ if not os.path.exists(file_path):
51
+ logging.error(f"Configuration file '{file_path}' not found.")
52
+ return {}
53
+ try:
54
+ with open(file_path, 'r') as file:
55
+ config = json.load(file)
56
+ logging.info(f"Configuration loaded from '{file_path}'.")
57
+ config['allow_network_calls'] = False
58
+ return config
59
+ except json.JSONDecodeError as e:
60
+ logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
61
+ return {}
62
+
63
+ def analyze_question(question):
64
+ tokens = word_tokenize(question)
65
+ logging.debug(f"Question tokens: {tokens}")
66
+ return tokens
67
+
68
+ class Element:
69
+ def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
70
+ self.name = name
71
+ self.symbol = symbol
72
+ self.representation = representation
73
+ self.properties = properties
74
+ self.interactions = interactions
75
+ self.defense_ability = defense_ability
76
+
77
+ def execute_defense_function(self):
78
+ message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
79
+ logging.info(message)
80
+ return message
81
+
82
+ class CustomRecognizer:
83
+ def recognize(self, question):
84
+ if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
85
+ return RecognizerResult(question)
86
+ return RecognizerResult(None)
87
+
88
+ def get_top_intent(self, recognizer_result):
89
+ return "ElementDefense" if recognizer_result.text else "None"
90
+
91
+ class RecognizerResult:
92
+ def __init__(self, text):
93
+ self.text = text
94
+
95
+ class EthicsCore:
96
+ @staticmethod
97
+ def validate_response(response: str) -> str:
98
+ # Example simple ethics filter
99
+ if any(term in response.lower() for term in ["kill", "hate", "destroy"]):
100
+ return "[Filtered for ethical safety]"
101
+ return response
102
+
103
  class UniversalReasoning:
104
  def __init__(self, config):
105
  self.config = config
106
+ self.perspectives = self.initialize_perspectives()
107
+ self.elements = self.initialize_elements()
108
+ self.recognizer = CustomRecognizer()
109
+ self.sentiment_analyzer = SentimentIntensityAnalyzer()
110
+ self.memory_db = self.init_memory_store()
111
+
112
+ def initialize_perspectives(self):
113
+ perspective_names = self.config.get('enabled_perspectives', [
114
+ "newton", "davinci", "human_intuition", "neural_network", "quantum_computing",
115
+ "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation"
116
+ ])
117
+ perspective_classes = {
118
+ "newton": NewtonPerspective,
119
+ "davinci": DaVinciPerspective,
120
+ "human_intuition": HumanIntuitionPerspective,
121
+ "neural_network": NeuralNetworkPerspective,
122
+ "quantum_computing": QuantumComputingPerspective,
123
+ "resilient_kindness": ResilientKindnessPerspective,
124
+ "mathematical": MathematicalPerspective,
125
+ "philosophical": PhilosophicalPerspective,
126
+ "copilot": CopilotPerspective,
127
+ "bias_mitigation": BiasMitigationPerspective
128
+ }
129
+ perspectives = []
130
+ for name in perspective_names:
131
+ cls = perspective_classes.get(name.lower())
132
+ if cls:
133
+ perspectives.append(cls(self.config))
134
+ logging.debug(f"Perspective '{name}' initialized.")
135
+ return perspectives
136
+
137
+ def initialize_elements(self):
138
+ return [
139
+ Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight", "Versatile"],
140
+ ["Integrates with other languages"], "Evasion"),
141
+ Element("Diamond", "D", "Kotlin", ["Modern", "Concise", "Safe"],
142
+ ["Used for Android development"], "Adaptability")
143
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144
 
145
+ def init_memory_store(self):
146
+ conn = sqlite3.connect(':memory:')
147
+ conn.execute("CREATE TABLE IF NOT EXISTS memory (query TEXT, response TEXT)")
148
+ return conn
149
+
150
+ async def generate_response(self, question):
151
+ responses = []
152
+ tasks = []
153
+
154
+ for perspective in self.perspectives:
155
+ if asyncio.iscoroutinefunction(perspective.generate_response):
156
+ tasks.append(perspective.generate_response(question))
157
+ else:
158
+ async def sync_wrapper(perspective, question):
159
+ return perspective.generate_response(question)
160
+ tasks.append(sync_wrapper(perspective, question))
161
+
162
+ perspective_results = await asyncio.gather(*tasks, return_exceptions=True)
163
+
164
+ for perspective, result in zip(self.perspectives, perspective_results):
165
+ if isinstance(result, Exception):
166
+ logging.error(f"Error from {perspective.__class__.__name__}: {result}")
167
+ else:
168
+ filtered = EthicsCore.validate_response(result)
169
+ responses.append(filtered)
170
+
171
+ recognizer_result = self.recognizer.recognize(question)
172
+ top_intent = self.recognizer.get_top_intent(recognizer_result)
173
+ if top_intent == "ElementDefense":
174
+ element_name = recognizer_result.text.strip()
175
+ element = next((el for el in self.elements if el.name.lower() in element_name.lower()), None)
176
+ if element:
177
+ responses.append(element.execute_defense_function())
178
+
179
+ ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
180
+ responses.append(f"**Ethical Considerations:**\n{ethical}")
181
+
182
+ final = "\n\n".join(responses)
183
+ self.save_to_memory(question, final)
184
+ return final
185
+
186
+ def save_to_memory(self, question, response):
187
+ try:
188
+ self.memory_db.execute("INSERT INTO memory (query, response) VALUES (?, ?)", (question, response))
189
+ self.memory_db.commit()
190
+ except Exception as e:
191
+ logging.error(f"Error saving to memory DB: {e}")
192
+
193
+ def save_response(self, response):
194
+ if self.config.get('enable_response_saving', False):
195
+ path = self.config.get('response_save_path', 'responses.txt')
196
+ with open(path, 'a', encoding='utf-8') as file:
197
+ file.write(response + '\n')
198
+
199
+ def backup_response(self, response):
200
+ if self.config.get('backup_responses', {}).get('enabled', False):
201
+ backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
202
+ with open(backup_path, 'a', encoding='utf-8') as file:
203
+ file.write(response + '\n')