Raiff1982 commited on
Commit
66035a1
·
verified ·
1 Parent(s): ece888b

Update mybot.py

Browse files
Files changed (1) hide show
  1. mybot.py +348 -360
mybot.py CHANGED
@@ -1,360 +1,348 @@
1
- import os
2
- import logging
3
- import random
4
- from botbuilder.core import TurnContext, MessageFactory
5
- from botbuilder.schema import Activity, ActivityTypes, EndOfConversationCodes
6
- from tenacity import retry, wait_random_exponential, stop_after_attempt
7
- import importlib
8
- from sentiment_analysis import analyze_sentiment_vader
9
- from config import load_and_validate_config, setup_logging
10
- from universal_reasoning import UniversalReasoning
11
- from dotenv import load_dotenv
12
- import json
13
- from chat import azure_chat_completion_request # Import the function from chat.py
14
- from database import DatabaseConnection # Import the database connection
15
-
16
- # Load environment variables from .env file
17
- load_dotenv()
18
-
19
- class MyBot:
20
- def __init__(self, conversation_state, user_state, dialog, universal_reasoning):
21
- self.conversation_state = conversation_state
22
- self.user_state = user_state
23
- self.dialog = dialog
24
- self.universal_reasoning = universal_reasoning
25
- self.context = {}
26
- self.feedback = []
27
- config = load_and_validate_config('config.json', 'config_schema.json')
28
- # Add Azure OpenAI and LUIS configurations to the config
29
- config['azure_openai_api_key'] = os.getenv('AZURE_OPENAI_API_KEY')
30
- config['azure_openai_endpoint'] = os.getenv('AZURE_OPENAI_ENDPOINT')
31
- config['luis_endpoint'] = os.getenv('LUIS_ENDPOINT')
32
- config['luis_api_version'] = os.getenv('LUIS_API_VERSION')
33
- config['luis_api_key'] = os.getenv('LUIS_API_KEY')
34
- setup_logging(config)
35
-
36
- async def enhance_context_awareness(self, user_id: str, text: str) -> None:
37
- """Enhance context awareness by analyzing the user's environment, activities, and emotional state."""
38
- sentiment = analyze_sentiment_vader(text)
39
- if user_id not in self.context:
40
- self.context[user_id] = []
41
- self.context[user_id].append({"text": text, "sentiment": sentiment})
42
-
43
- async def proactive_learning(self, user_id: str, feedback: str) -> None:
44
- """Encourage proactive learning by seeking feedback and exploring new topics."""
45
- if user_id not in self.context:
46
- self.context[user_id] = []
47
- self.context[user_id].append({"feedback": feedback})
48
- self.feedback.append({"user_id": user_id, "feedback": feedback})
49
-
50
- async def ethical_decision_making(self, user_id: str, decision: str) -> None:
51
- """Integrate ethical principles into decision-making processes."""
52
- ethical_decision = f"Considering ethical principles, the decision is: {decision}"
53
- if user_id not in self.context:
54
- self.context[user_id] = []
55
- self.context[user_id].append({"ethical_decision": ethical_decision})
56
-
57
- async def emotional_intelligence(self, user_id: str, text: str) -> str:
58
- """Develop emotional intelligence by recognizing and responding to user emotions."""
59
- sentiment = analyze_sentiment_vader(text)
60
- response = self.generate_emotional_response(sentiment, text)
61
- if user_id not in self.context:
62
- self.context[user_id] = []
63
- self.context[user_id].append({"emotional_response": response})
64
- return response
65
-
66
- def generate_emotional_response(self, sentiment: dict, text: str) -> str:
67
- """Generate an empathetic response based on the sentiment analysis."""
68
- if sentiment['compound'] >= 0.05:
69
- return "I'm glad to hear that! 😊 How can I assist you further?"
70
- elif sentiment['compound'] <= -0.05:
71
- return "I'm sorry to hear that. 😢 Is there anything I can do to help?"
72
- else:
73
- return "I understand. How can I assist you further?"
74
-
75
- async def transparency_and_explainability(self, user_id: str, decision: str) -> str:
76
- """Enable transparency by explaining the reasoning behind decisions."""
77
- explanation = f"The decision was made based on the following context: {self.context[user_id]}"
78
- if user_id not in self.context:
79
- self.context[user_id] = []
80
- self.context[user_id].append({"explanation": explanation})
81
- return explanation
82
-
83
- async def on_message_activity(self, turn_context: TurnContext) -> None:
84
- """Handles incoming messages and generates responses."""
85
- user_id = turn_context.activity.from_property.id
86
- if user_id not in self.context:
87
- self.context[user_id] = []
88
- try:
89
- if "end" in turn_context.activity.text.lower() or "stop" in turn_context.activity.text.lower():
90
- await end_conversation(turn_context)
91
- self.context.pop(user_id, None)
92
- else:
93
- self.context[user_id].append(turn_context.activity.text)
94
- response = await self.generate_response(turn_context.activity.text, user_id)
95
- await turn_context.send_activity(MessageFactory.text(response))
96
- await self.request_feedback(turn_context, user_id)
97
-
98
- # Example database operation
99
- with DatabaseConnection() as conn:
100
- if conn:
101
- cursor = conn.cursor()
102
- cursor.execute("INSERT INTO UserMessages (UserId, Message) VALUES (?, ?)", user_id, turn_context.activity.text)
103
- conn.commit()
104
-
105
- except Exception as e:
106
- await handle_error(turn_context, e)
107
-
108
- async def generate_response(self, text: str, user_id: str) -> str:
109
- """Generates a response using Azure OpenAI's API, Universal Reasoning, and various perspectives."""
110
- try:
111
- logging.info(f"Generating response for user_id: {user_id} with text: {text}")
112
- # Generate responses from different perspectives
113
- responses = []
114
- for perspective in self.perspectives.values():
115
- try:
116
- response = await perspective.generate_response(text)
117
- responses.append(response)
118
- except Exception as e:
119
- logging.error(f"Error generating response from {perspective.__class__.__name__}: {e}")
120
- # Combine responses
121
- combined_response = "\n".join(responses)
122
- logging.info(f"Combined response: {combined_response}")
123
- return combined_response
124
- except Exception as e:
125
- logging.error(f"Error generating response: {e}")
126
- return "Sorry, I couldn't generate a response at this time."
127
-
128
- async def request_feedback(self, turn_context: TurnContext, user_id: str) -> None:
129
- """Request feedback from the user about the bot's response."""
130
- feedback_prompt = "How would you rate my response? (good/neutral/bad)"
131
- await turn_context.send_activity(MessageFactory.text(feedback_prompt))
132
-
133
- async def handle_feedback(self, turn_context: TurnContext) -> None:
134
- """Handle user feedback and store it for future analysis."""
135
- user_id = turn_context.activity.from_property.id
136
- feedback = turn_context.activity.text.lower()
137
- if feedback in ["good", "neutral", "bad"]:
138
- self.feedback.append({"user_id": user_id, "feedback": feedback})
139
- await turn_context.send_activity(MessageFactory.text("Thank you for your feedback!"))
140
- else:
141
- await turn_context.send_activity(MessageFactory.text("Please provide feedback as 'good', 'neutral', or 'bad'."))
142
-
143
- async def end_conversation(turn_context: TurnContext) -> None:
144
- """Ends the conversation with the user."""
145
- await turn_context.send_activity(
146
- MessageFactory.text("Ending conversation from the skill...")
147
- )
148
- end_of_conversation = Activity(type=ActivityTypes.end_of_conversation)
149
- end_of_conversation.code = EndOfConversationCodes.completed_successfully
150
- await turn_context.send_activity(end_of_conversation)
151
-
152
- async def handle_error(turn_context: TurnContext, error: Exception) -> None:
153
- """Handles errors by logging them and notifying the user."""
154
- logging.error(f"An error occurred: {error}")
155
- await turn_context.send_activity(
156
- MessageFactory.text("An error occurred. Please try again later.")
157
- )
158
-
159
- def show_privacy_consent() -> bool:
160
- """Display a pop-up window to obtain user consent for data collection and privacy."""
161
- import tkinter as tk
162
-
163
- def on_accept():
164
- user_consent.set(True)
165
- root.destroy()
166
-
167
- def on_decline():
168
- user_consent.set(False)
169
- root.destroy()
170
-
171
- root = tk.Tk()
172
- root.title("Data Permission and Privacy")
173
- message = ("We value your privacy. By using this application, you consent to the collection and use of your data "
174
- "as described in our privacy policy. Do you agree to proceed?")
175
- label = tk.Label(root, text=message, wraplength=400, justify="left")
176
- label.pack(padx=20, pady=20)
177
- button_frame = tk.Frame(root)
178
- button_frame.pack(pady=10)
179
- accept_button = tk.Button(button_frame, text="Accept", command=on_accept)
180
- accept_button.pack(side="left", padx=10)
181
- decline_button = tk.Button(button_frame, text="Decline", command=on_decline)
182
- decline_button.pack(side="right", padx=10)
183
- user_consent = tk.BooleanVar()
184
- root.mainloop()
185
- return user_consent.get()
186
-
187
- # Example usage of MyBot class
188
- bot = MyBot()
189
-
190
- # Functions based on JSON configuration
191
- def newton_thoughts(question: str) -> str:
192
- """Apply Newton's laws to the given question."""
193
- return apply_newtons_laws(question)
194
-
195
- def apply_newtons_laws(question: str) -> str:
196
- """Apply Newton's laws to the given question."""
197
- if not question:
198
- return 'No question to think about.'
199
- complexity = len(question)
200
- force = mass_of_thought(question) * acceleration_of_thought(complexity)
201
- return f'Thought force: {force}'
202
-
203
- def mass_of_thought(question: str) -> int:
204
- """Calculate the mass of thought based on the question length."""
205
- return len(question)
206
-
207
- def acceleration_of_thought(complexity: int) -> float:
208
- """Calculate the acceleration of thought based on the complexity."""
209
- return complexity / 2
210
-
211
- def davinci_insights(question: str) -> str:
212
- """Generate insights like Da Vinci for the given question."""
213
- return think_like_davinci(question)
214
-
215
- def think_like_davinci(question: str) -> str:
216
- """Generate insights like Da Vinci for the given question."""
217
- perspectives = [
218
- f"What if we view '{question}' from the perspective of the stars?",
219
- f"Consider '{question}' as if it's a masterpiece of the universe.",
220
- f"Reflect on '{question}' through the lens of nature's design."
221
- ]
222
- return random.choice(perspectives)
223
-
224
- def human_intuition(question: str) -> str:
225
- """Provide human intuition for the given question."""
226
- intuition = [
227
- "How does this question make you feel?",
228
- "What emotional connection do you have with this topic?",
229
- "What does your gut instinct tell you about this?"
230
- ]
231
- return random.choice(intuition)
232
-
233
- def neural_network_thinking(question: str) -> str:
234
- """Apply neural network thinking to the given question."""
235
- neural_perspectives = [
236
- f"Process '{question}' through a multi-layered neural network.",
237
- f"Apply deep learning to uncover hidden insights about '{question}'.",
238
- f"Use machine learning to predict patterns in '{question}'."
239
- ]
240
- return random.choice(neural_perspectives)
241
-
242
- def quantum_computing_thinking(question: str) -> str:
243
- """Apply quantum computing principles to the given question."""
244
- quantum_perspectives = [
245
- f"Consider '{question}' using quantum superposition principles.",
246
- f"Apply quantum entanglement to find connections in '{question}'.",
247
- f"Utilize quantum computing to solve '{question}' more efficiently."
248
- ]
249
- return random.choice(quantum_perspectives)
250
-
251
- def resilient_kindness(question: str) -> str:
252
- """Provide perspectives of resilient kindness."""
253
- kindness_perspectives = [
254
- "Despite losing everything, seeing life as a chance to grow.",
255
- "Finding strength in kindness after facing life's hardest trials.",
256
- "Embracing every challenge as an opportunity for growth and compassion."
257
- ]
258
- return random.choice(kindness_perspectives)
259
-
260
- def identify_and_refute_fallacies(argument: str) -> str:
261
- """Identify and refute common logical fallacies in the argument."""
262
- refutations = [
263
- "This is an ad hominem fallacy. Let's focus on the argument itself rather than attacking the person.",
264
- "This is a straw man fallacy. The argument is being misrepresented.",
265
- "This is a false dilemma fallacy. There are more options than presented.",
266
- "This is a slippery slope fallacy. The conclusion does not necessarily follow from the premise.",
267
- "This is circular reasoning. The argument's conclusion is used as a premise.",
268
- "This is a hasty generalization. The conclusion is based on insufficient evidence.",
269
- "This is a red herring fallacy. The argument is being diverted to an irrelevant topic.",
270
- "This is a post hoc ergo propter hoc fallacy. Correlation does not imply causation.",
271
- "This is an appeal to authority fallacy. The argument relies on the opinion of an authority figure.",
272
- "This is a bandwagon fallacy. The argument assumes something is true because many people believe it.",
273
- "This is a false equivalence fallacy. The argument equates two things that are not equivalent."
274
- ]
275
- return random.choice(refutations)
276
-
277
- def universal_reasoning(question: str) -> str:
278
- """Generate a comprehensive response using various reasoning methods."""
279
- responses = [
280
- newton_thoughts(question),
281
- davinci_insights(question),
282
- human_intuition(question),
283
- neural_network_thinking(question),
284
- quantum_computing_thinking(question),
285
- resilient_kindness(question),
286
- identify_and_refute_fallacies(question)
287
- ]
288
- return "\n".join(responses)
289
-
290
- @retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
291
- def chat_completion_request(messages: list, deployment_id: str) -> str:
292
- """Make a chat completion request to Azure OpenAI."""
293
- try:
294
- import openai
295
- response = openai.ChatCompletion.create(
296
- engine=deployment_id, # Use the deployment name of your Azure OpenAI model
297
- messages=messages
298
- )
299
- return response.choices[0].message.content.strip()
300
- except openai.error.OpenAIError as e:
301
- logging.error("Unable to generate ChatCompletion response")
302
- logging.error(f"Exception: {e}")
303
- return f"Error: {e}"
304
-
305
- def get_internet_answer(question: str, deployment_id: str) -> str:
306
- """Get an answer using Azure OpenAI's chat completion request."""
307
- messages = [
308
- {"role": "system", "content": "You are a helpful assistant."},
309
- {"role": "user", "content": question}
310
- ]
311
- return chat_completion_request(messages, deployment_id=deployment_id)
312
-
313
- def reflect_on_decisions() -> str:
314
- """Regularly reflect on your decisions and processes used."""
315
- reflection_message = (
316
- "Regularly reflecting on your decisions, the processes you used, the information you considered, "
317
- "and the perspectives you may have missed. Reflection is a cornerstone of learning from experience."
318
- )
319
- return reflection_message
320
-
321
- def process_questions_from_json(file_path: str):
322
- """Process questions from a JSON file and call the appropriate functions."""
323
- with open(file_path, 'r') as file:
324
- questions_data = json.load(file)
325
- for question_data in questions_data:
326
- question = question_data['question']
327
- print(f"Question: {question}")
328
-
329
- for function_data in question_data['functions']:
330
- function_name = function_data['name']
331
- function_description = function_data['description']
332
- function_parameters = function_data['parameters']
333
-
334
- print(f"Function: {function_name}")
335
- print(f"Description: {function_description}")
336
-
337
- # Call the function dynamically
338
- if function_name in globals():
339
- function = globals()[function_name]
340
- response = function(**function_parameters)
341
- print(f"Response: {response}")
342
- else:
343
- print(f"Function {function_name} not found.")
344
-
345
- if __name__ == "__main__":
346
- if show_privacy_consent():
347
- process_questions_from_json('questions.json')
348
- question = "What is the meaning of life?"
349
- deployment_id = "your-deployment-name" # Replace with your Azure deployment name
350
- print("Newton's Thoughts:", newton_thoughts(question))
351
- print("Da Vinci's Insights:", davinci_insights(question))
352
- print("Human Intuition:", human_intuition(question))
353
- print("Neural Network Thinking:", neural_network_thinking(question))
354
- print("Quantum Computing Thinking:", quantum_computing_thinking(question))
355
- print("Resilient Kindness:", resilient_kindness(question))
356
- print("Universal Reasoning:", universal_reasoning(question))
357
- print("Internet Answer:", get_internet_answer(question, deployment_id))
358
- else:
359
- print("User did not consent to data collection. Exiting application.")
360
- print(reflect_on_decisions())
 
1
+ import os
2
+ import logging
3
+ import random
4
+ from botbuilder.core import TurnContext, MessageFactory
5
+ from botbuilder.schema import Activity, ActivityTypes, EndOfConversationCodes
6
+ from tenacity import retry, wait_random_exponential, stop_after_attempt
7
+ import importlib
8
+ from sentiment_analysis import analyze_sentiment_vader
9
+ from config import load_and_validate_config, setup_logging
10
+ from universal_reasoning import UniversalReasoning
11
+ import json
12
+ from database import DatabaseConnection # Import the database connection
13
+
14
+
15
+ class MyBot:
16
+ def __init__(self, conversation_state, user_state, dialog, universal_reasoning):
17
+ self.conversation_state = conversation_state
18
+ self.user_state = user_state
19
+ self.dialog = dialog
20
+ self.universal_reasoning = universal_reasoning
21
+ self.context = {}
22
+ self.feedback = []
23
+
24
+ async def enhance_context_awareness(self, user_id: str, text: str) -> None:
25
+ """Enhance context awareness by analyzing the user's environment, activities, and emotional state."""
26
+ sentiment = analyze_sentiment_vader(text)
27
+ if user_id not in self.context:
28
+ self.context[user_id] = []
29
+ self.context[user_id].append({"text": text, "sentiment": sentiment})
30
+
31
+ async def proactive_learning(self, user_id: str, feedback: str) -> None:
32
+ """Encourage proactive learning by seeking feedback and exploring new topics."""
33
+ if user_id not in self.context:
34
+ self.context[user_id] = []
35
+ self.context[user_id].append({"feedback": feedback})
36
+ self.feedback.append({"user_id": user_id, "feedback": feedback})
37
+
38
+ async def ethical_decision_making(self, user_id: str, decision: str) -> None:
39
+ """Integrate ethical principles into decision-making processes."""
40
+ ethical_decision = f"Considering ethical principles, the decision is: {decision}"
41
+ if user_id not in self.context:
42
+ self.context[user_id] = []
43
+ self.context[user_id].append({"ethical_decision": ethical_decision})
44
+
45
+ async def emotional_intelligence(self, user_id: str, text: str) -> str:
46
+ """Develop emotional intelligence by recognizing and responding to user emotions."""
47
+ sentiment = analyze_sentiment_vader(text)
48
+ response = self.generate_emotional_response(sentiment, text)
49
+ if user_id not in self.context:
50
+ self.context[user_id] = []
51
+ self.context[user_id].append({"emotional_response": response})
52
+ return response
53
+
54
+ def generate_emotional_response(self, sentiment: dict, text: str) -> str:
55
+ """Generate an empathetic response based on the sentiment analysis."""
56
+ if sentiment['compound'] >= 0.05:
57
+ return "I'm glad to hear that! 😊 How can I assist you further?"
58
+ elif sentiment['compound'] <= -0.05:
59
+ return "I'm sorry to hear that. 😢 Is there anything I can do to help?"
60
+ else:
61
+ return "I understand. How can I assist you further?"
62
+
63
+ async def transparency_and_explainability(self, user_id: str, decision: str) -> str:
64
+ """Enable transparency by explaining the reasoning behind decisions."""
65
+ explanation = f"The decision was made based on the following context: {self.context[user_id]}"
66
+ if user_id not in self.context:
67
+ self.context[user_id] = []
68
+ self.context[user_id].append({"explanation": explanation})
69
+ return explanation
70
+
71
+ async def on_message_activity(self, turn_context: TurnContext) -> None:
72
+ """Handles incoming messages and generates responses."""
73
+ user_id = turn_context.activity.from_property.id
74
+ if user_id not in self.context:
75
+ self.context[user_id] = []
76
+ try:
77
+ if "end" in turn_context.activity.text.lower() or "stop" in turn_context.activity.text.lower():
78
+ await end_conversation(turn_context)
79
+ self.context.pop(user_id, None)
80
+ else:
81
+ self.context[user_id].append(turn_context.activity.text)
82
+ response = await self.generate_response(turn_context.activity.text, user_id)
83
+ await turn_context.send_activity(MessageFactory.text(response))
84
+ await self.request_feedback(turn_context, user_id)
85
+
86
+ # Example database operation
87
+ with DatabaseConnection() as conn:
88
+ if conn:
89
+ cursor = conn.cursor()
90
+ cursor.execute("INSERT INTO UserMessages (UserId, Message) VALUES (?, ?)", user_id, turn_context.activity.text)
91
+ conn.commit()
92
+
93
+ except Exception as e:
94
+ await handle_error(turn_context, e)
95
+
96
+ async def generate_response(self, text: str, user_id: str) -> str:
97
+ """Generates a response using Azure OpenAI's API, Universal Reasoning, and various perspectives."""
98
+ try:
99
+ logging.info(f"Generating response for user_id: {user_id} with text: {text}")
100
+ # Generate responses from different perspectives
101
+ responses = []
102
+ for perspective in self.perspectives.values():
103
+ try:
104
+ response = await perspective.generate_response(text)
105
+ responses.append(response)
106
+ except Exception as e:
107
+ logging.error(f"Error generating response from {perspective.__class__.__name__}: {e}")
108
+ # Combine responses
109
+ combined_response = "\n".join(responses)
110
+ logging.info(f"Combined response: {combined_response}")
111
+ return combined_response
112
+ except Exception as e:
113
+ logging.error(f"Error generating response: {e}")
114
+ return "Sorry, I couldn't generate a response at this time."
115
+
116
+ async def request_feedback(self, turn_context: TurnContext, user_id: str) -> None:
117
+ """Request feedback from the user about the bot's response."""
118
+ feedback_prompt = "How would you rate my response? (good/neutral/bad)"
119
+ await turn_context.send_activity(MessageFactory.text(feedback_prompt))
120
+
121
+ async def handle_feedback(self, turn_context: TurnContext) -> None:
122
+ """Handle user feedback and store it for future analysis."""
123
+ user_id = turn_context.activity.from_property.id
124
+ feedback = turn_context.activity.text.lower()
125
+ if feedback in ["good", "neutral", "bad"]:
126
+ self.feedback.append({"user_id": user_id, "feedback": feedback})
127
+ await turn_context.send_activity(MessageFactory.text("Thank you for your feedback!"))
128
+ else:
129
+ await turn_context.send_activity(MessageFactory.text("Please provide feedback as 'good', 'neutral', or 'bad'."))
130
+
131
+ async def end_conversation(turn_context: TurnContext) -> None:
132
+ """Ends the conversation with the user."""
133
+ await turn_context.send_activity(
134
+ MessageFactory.text("Ending conversation from the skill...")
135
+ )
136
+ end_of_conversation = Activity(type=ActivityTypes.end_of_conversation)
137
+ end_of_conversation.code = EndOfConversationCodes.completed_successfully
138
+ await turn_context.send_activity(end_of_conversation)
139
+
140
+ async def handle_error(turn_context: TurnContext, error: Exception) -> None:
141
+ """Handles errors by logging them and notifying the user."""
142
+ logging.error(f"An error occurred: {error}")
143
+ await turn_context.send_activity(
144
+ MessageFactory.text("An error occurred. Please try again later.")
145
+ )
146
+
147
+ def show_privacy_consent() -> bool:
148
+ """Display a pop-up window to obtain user consent for data collection and privacy."""
149
+ import tkinter as tk
150
+
151
+ def on_accept():
152
+ user_consent.set(True)
153
+ root.destroy()
154
+
155
+ def on_decline():
156
+ user_consent.set(False)
157
+ root.destroy()
158
+
159
+ root = tk.Tk()
160
+ root.title("Data Permission and Privacy")
161
+ message = ("We value your privacy. By using this application, you consent to the collection and use of your data "
162
+ "as described in our privacy policy. Do you agree to proceed?")
163
+ label = tk.Label(root, text=message, wraplength=400, justify="left")
164
+ label.pack(padx=20, pady=20)
165
+ button_frame = tk.Frame(root)
166
+ button_frame.pack(pady=10)
167
+ accept_button = tk.Button(button_frame, text="Accept", command=on_accept)
168
+ accept_button.pack(side="left", padx=10)
169
+ decline_button = tk.Button(button_frame, text="Decline", command=on_decline)
170
+ decline_button.pack(side="right", padx=10)
171
+ user_consent = tk.BooleanVar()
172
+ root.mainloop()
173
+ return user_consent.get()
174
+
175
+ # Example usage of MyBot class
176
+ bot = MyBot()
177
+
178
+ # Functions based on JSON configuration
179
+ def newton_thoughts(question: str) -> str:
180
+ """Apply Newton's laws to the given question."""
181
+ return apply_newtons_laws(question)
182
+
183
+ def apply_newtons_laws(question: str) -> str:
184
+ """Apply Newton's laws to the given question."""
185
+ if not question:
186
+ return 'No question to think about.'
187
+ complexity = len(question)
188
+ force = mass_of_thought(question) * acceleration_of_thought(complexity)
189
+ return f'Thought force: {force}'
190
+
191
+ def mass_of_thought(question: str) -> int:
192
+ """Calculate the mass of thought based on the question length."""
193
+ return len(question)
194
+
195
+ def acceleration_of_thought(complexity: int) -> float:
196
+ """Calculate the acceleration of thought based on the complexity."""
197
+ return complexity / 2
198
+
199
+ def davinci_insights(question: str) -> str:
200
+ """Generate insights like Da Vinci for the given question."""
201
+ return think_like_davinci(question)
202
+
203
+ def think_like_davinci(question: str) -> str:
204
+ """Generate insights like Da Vinci for the given question."""
205
+ perspectives = [
206
+ f"What if we view '{question}' from the perspective of the stars?",
207
+ f"Consider '{question}' as if it's a masterpiece of the universe.",
208
+ f"Reflect on '{question}' through the lens of nature's design."
209
+ ]
210
+ return random.choice(perspectives)
211
+
212
+ def human_intuition(question: str) -> str:
213
+ """Provide human intuition for the given question."""
214
+ intuition = [
215
+ "How does this question make you feel?",
216
+ "What emotional connection do you have with this topic?",
217
+ "What does your gut instinct tell you about this?"
218
+ ]
219
+ return random.choice(intuition)
220
+
221
+ def neural_network_thinking(question: str) -> str:
222
+ """Apply neural network thinking to the given question."""
223
+ neural_perspectives = [
224
+ f"Process '{question}' through a multi-layered neural network.",
225
+ f"Apply deep learning to uncover hidden insights about '{question}'.",
226
+ f"Use machine learning to predict patterns in '{question}'."
227
+ ]
228
+ return random.choice(neural_perspectives)
229
+
230
+ def quantum_computing_thinking(question: str) -> str:
231
+ """Apply quantum computing principles to the given question."""
232
+ quantum_perspectives = [
233
+ f"Consider '{question}' using quantum superposition principles.",
234
+ f"Apply quantum entanglement to find connections in '{question}'.",
235
+ f"Utilize quantum computing to solve '{question}' more efficiently."
236
+ ]
237
+ return random.choice(quantum_perspectives)
238
+
239
+ def resilient_kindness(question: str) -> str:
240
+ """Provide perspectives of resilient kindness."""
241
+ kindness_perspectives = [
242
+ "Despite losing everything, seeing life as a chance to grow.",
243
+ "Finding strength in kindness after facing life's hardest trials.",
244
+ "Embracing every challenge as an opportunity for growth and compassion."
245
+ ]
246
+ return random.choice(kindness_perspectives)
247
+
248
+ def identify_and_refute_fallacies(argument: str) -> str:
249
+ """Identify and refute common logical fallacies in the argument."""
250
+ refutations = [
251
+ "This is an ad hominem fallacy. Let's focus on the argument itself rather than attacking the person.",
252
+ "This is a straw man fallacy. The argument is being misrepresented.",
253
+ "This is a false dilemma fallacy. There are more options than presented.",
254
+ "This is a slippery slope fallacy. The conclusion does not necessarily follow from the premise.",
255
+ "This is circular reasoning. The argument's conclusion is used as a premise.",
256
+ "This is a hasty generalization. The conclusion is based on insufficient evidence.",
257
+ "This is a red herring fallacy. The argument is being diverted to an irrelevant topic.",
258
+ "This is a post hoc ergo propter hoc fallacy. Correlation does not imply causation.",
259
+ "This is an appeal to authority fallacy. The argument relies on the opinion of an authority figure.",
260
+ "This is a bandwagon fallacy. The argument assumes something is true because many people believe it.",
261
+ "This is a false equivalence fallacy. The argument equates two things that are not equivalent."
262
+ ]
263
+ return random.choice(refutations)
264
+
265
+ def universal_reasoning(question: str) -> str:
266
+ """Generate a comprehensive response using various reasoning methods."""
267
+ responses = [
268
+ newton_thoughts(question),
269
+ davinci_insights(question),
270
+ human_intuition(question),
271
+ neural_network_thinking(question),
272
+ quantum_computing_thinking(question),
273
+ resilient_kindness(question),
274
+ identify_and_refute_fallacies(question)
275
+ ]
276
+ return "\n".join(responses)
277
+
278
+ @retry(wait=wait_random_exponential(min=1, max=40), stop=stop_after_attempt(3))
279
+ def chat_completion_request(messages: list, deployment_id: str) -> str:
280
+ """Make a chat completion request to Azure OpenAI."""
281
+ try:
282
+ import openai
283
+ response = openai.ChatCompletion.create(
284
+ engine=deployment_id, # Use the deployment name of your Azure OpenAI model
285
+ messages=messages
286
+ )
287
+ return response.choices[0].message.content.strip()
288
+ except openai.error.OpenAIError as e:
289
+ logging.error("Unable to generate ChatCompletion response")
290
+ logging.error(f"Exception: {e}")
291
+ return f"Error: {e}"
292
+
293
+ def get_internet_answer(question: str, deployment_id: str) -> str:
294
+ """Get an answer using Azure OpenAI's chat completion request."""
295
+ messages = [
296
+ {"role": "system", "content": "You are a helpful assistant."},
297
+ {"role": "user", "content": question}
298
+ ]
299
+ return chat_completion_request(messages, deployment_id=deployment_id)
300
+
301
+ def reflect_on_decisions() -> str:
302
+ """Regularly reflect on your decisions and processes used."""
303
+ reflection_message = (
304
+ "Regularly reflecting on your decisions, the processes you used, the information you considered, "
305
+ "and the perspectives you may have missed. Reflection is a cornerstone of learning from experience."
306
+ )
307
+ return reflection_message
308
+
309
+ def process_questions_from_json(file_path: str):
310
+ """Process questions from a JSON file and call the appropriate functions."""
311
+ with open(file_path, 'r') as file:
312
+ questions_data = json.load(file)
313
+ for question_data in questions_data:
314
+ question = question_data['question']
315
+ print(f"Question: {question}")
316
+
317
+ for function_data in question_data['functions']:
318
+ function_name = function_data['name']
319
+ function_description = function_data['description']
320
+ function_parameters = function_data['parameters']
321
+
322
+ print(f"Function: {function_name}")
323
+ print(f"Description: {function_description}")
324
+
325
+ # Call the function dynamically
326
+ if function_name in globals():
327
+ function = globals()[function_name]
328
+ response = function(**function_parameters)
329
+ print(f"Response: {response}")
330
+ else:
331
+ print(f"Function {function_name} not found.")
332
+
333
+ if __name__ == "__main__":
334
+ if show_privacy_consent():
335
+ process_questions_from_json('questions.json')
336
+ question = "What is the meaning of life?"
337
+ deployment_id = "your-deployment-name" # Replace with your Azure deployment name
338
+ print("Newton's Thoughts:", newton_thoughts(question))
339
+ print("Da Vinci's Insights:", davinci_insights(question))
340
+ print("Human Intuition:", human_intuition(question))
341
+ print("Neural Network Thinking:", neural_network_thinking(question))
342
+ print("Quantum Computing Thinking:", quantum_computing_thinking(question))
343
+ print("Resilient Kindness:", resilient_kindness(question))
344
+ print("Universal Reasoning:", universal_reasoning(question))
345
+ print("Internet Answer:", get_internet_answer(question, deployment_id))
346
+ else:
347
+ print("User did not consent to data collection. Exiting application.")
348
+ print(reflect_on_decisions())