Spaces:
Runtime error
Runtime error
import json | |
import os | |
import logging | |
from typing import List | |
# Ensure vaderSentiment is installed | |
try: | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
except ModuleNotFoundError: | |
import subprocess | |
import sys | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"]) | |
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer | |
# Ensure nltk is installed and download required data | |
try: | |
import nltk | |
from nltk.tokenize import word_tokenize | |
nltk.download('punkt', quiet=True) | |
except ImportError: | |
import subprocess | |
import sys | |
subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"]) | |
import nltk | |
from nltk.tokenize import word_tokenize | |
nltk.download('punkt', quiet=True) | |
# Import perspectives | |
from perspectives import ( | |
NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective, | |
NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective, | |
MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective | |
) | |
# Setup Logging | |
def setup_logging(config): | |
if config.get('logging_enabled', True): | |
log_level = config.get('log_level', 'DEBUG').upper() | |
numeric_level = getattr(logging, log_level, logging.DEBUG) | |
logging.basicConfig( | |
filename='universal_reasoning.log', | |
level=numeric_level, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
else: | |
logging.disable(logging.CRITICAL) | |
# Load JSON configuration | |
def load_json_config(file_path): | |
if not os.path.exists(file_path): | |
logging.error(f"Configuration file '{file_path}' not found.") | |
return {} | |
try: | |
with open(file_path, 'r') as file: | |
config = json.load(file) | |
logging.info(f"Configuration loaded from '{file_path}'.") | |
config['allow_network_calls'] = False # Lockdown | |
return config | |
except json.JSONDecodeError as e: | |
logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}") | |
return {} | |
# NLP Analyzer | |
def analyze_question(question): | |
tokens = word_tokenize(question) | |
logging.debug(f"Question tokens: {tokens}") | |
return tokens | |
# Element Class | |
class Element: | |
def __init__(self, name, symbol, representation, properties, interactions, defense_ability): | |
self.name = name | |
self.symbol = symbol | |
self.representation = representation | |
self.properties = properties | |
self.interactions = interactions | |
self.defense_ability = defense_ability | |
def execute_defense_function(self): | |
message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}" | |
logging.info(message) | |
return message | |
# Recognizer Classes | |
class CustomRecognizer: | |
def recognize(self, question): | |
if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]): | |
return RecognizerResult(question) | |
return RecognizerResult(None) | |
def get_top_intent(self, recognizer_result): | |
if recognizer_result.text: | |
return "ElementDefense" | |
else: | |
return "None" | |
class RecognizerResult: | |
def __init__(self, text): | |
self.text = text | |
# Reasoning Engine | |
class UniversalReasoning: | |
def __init__(self, config): | |
self.config = config | |
self.perspectives = self.initialize_perspectives() | |
self.elements = self.initialize_elements() | |
self.recognizer = CustomRecognizer() | |
self.sentiment_analyzer = SentimentIntensityAnalyzer() | |
def initialize_perspectives(self): | |
perspective_names = self.config.get('enabled_perspectives', [ | |
"newton", "davinci", "human_intuition", "neural_network", "quantum_computing", | |
"resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation" | |
]) | |
perspective_classes = { | |
"newton": NewtonPerspective, | |
"davinci": DaVinciPerspective, | |
"human_intuition": HumanIntuitionPerspective, | |
"neural_network": NeuralNetworkPerspective, | |
"quantum_computing": QuantumComputingPerspective, | |
"resilient_kindness": ResilientKindnessPerspective, | |
"mathematical": MathematicalPerspective, | |
"philosophical": PhilosophicalPerspective, | |
"copilot": CopilotPerspective, | |
"bias_mitigation": BiasMitigationPerspective | |
} | |
perspectives = [] | |
for name in perspective_names: | |
cls = perspective_classes.get(name.lower()) | |
if cls: | |
perspectives.append(cls(self.config)) | |
logging.debug(f"Perspective '{name}' initialized.") | |
return perspectives | |
def initialize_elements(self): | |
return [ | |
Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight", "Versatile"], | |
["Integrates with other languages"], "Evasion"), | |
Element("Diamond", "D", "Kotlin", ["Modern", "Concise", "Safe"], | |
["Used for Android development"], "Adaptability") | |
] | |
async def generate_response(self, question): | |
responses = [] | |
tasks = [] | |
for perspective in self.perspectives: | |
if asyncio.iscoroutinefunction(perspective.generate_response): | |
tasks.append(perspective.generate_response(question)) | |
else: | |
async def sync_wrapper(perspective, question): | |
return perspective.generate_response(question) | |
tasks.append(sync_wrapper(perspective, question)) | |
perspective_results = await asyncio.gather(*tasks, return_exceptions=True) | |
for perspective, result in zip(self.perspectives, perspective_results): | |
if isinstance(result, Exception): | |
logging.error(f"Error from {perspective.__class__.__name__}: {result}") | |
else: | |
responses.append(result) | |
recognizer_result = self.recognizer.recognize(question) | |
top_intent = self.recognizer.get_top_intent(recognizer_result) | |
if top_intent == "ElementDefense": | |
element_name = recognizer_result.text.strip() | |
element = next((el for el in self.elements if el.name.lower() in element_name.lower()), None) | |
if element: | |
responses.append(element.execute_defense_function()) | |
ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.") | |
responses.append(f"**Ethical Considerations:**\n{ethical}") | |
return "\n\n".join(responses) | |
def save_response(self, response): | |
if self.config.get('enable_response_saving', False): | |
path = self.config.get('response_save_path', 'responses.txt') | |
with open(path, 'a', encoding='utf-8') as file: | |
file.write(response + '\n') | |
def backup_response(self, response): | |
if self.config.get('backup_responses', {}).get('enabled', False): | |
backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt') | |
with open(backup_path, 'a', encoding='utf-8') as file: | |
file.write(response + '\n') | |
# Execution | |
if __name__ == "__main__": | |
config = load_json_config('config.json') | |
setup_logging(config) | |
ur = UniversalReasoning(config) | |
q = "Tell me about Hydrogen and its defense mechanisms." | |
result = asyncio.run(ur.generate_response(q)) | |
print(result) | |
ur.save_response(result) | |
ur.backup_response(result) |