File size: 8,125 Bytes
c951da6
 
 
 
94f1ac6
c951da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f1ac6
c951da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f1ac6
 
 
 
 
 
 
 
c951da6
 
 
 
 
 
 
94f1ac6
c951da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f1ac6
 
 
 
 
c951da6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f1ac6
 
c951da6
 
 
 
 
 
 
 
 
 
 
 
94f1ac6
 
 
 
 
 
 
 
 
 
c951da6
 
 
 
 
 
 
 
 
 
 
94f1ac6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import asyncio
import json
import os
import logging
import sqlite3
from typing import List

# Ensure vaderSentiment is installed
try:
    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
except ModuleNotFoundError:
    import subprocess
    import sys
    subprocess.check_call([sys.executable, "-m", "pip", "install", "vaderSentiment"])
    from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

# Ensure nltk is installed and download required data
try:
    import nltk
    from nltk.tokenize import word_tokenize
    nltk.download('punkt', quiet=True)
except ImportError:
    import subprocess
    import sys
    subprocess.check_call([sys.executable, "-m", "pip", "install", "nltk"])
    import nltk
    from nltk.tokenize import word_tokenize
    nltk.download('punkt', quiet=True)

# Import perspectives
from perspectives import (
    NewtonPerspective, DaVinciPerspective, HumanIntuitionPerspective,
    NeuralNetworkPerspective, QuantumComputingPerspective, ResilientKindnessPerspective,
    MathematicalPerspective, PhilosophicalPerspective, CopilotPerspective, BiasMitigationPerspective
)

def setup_logging(config):
    if config.get('logging_enabled', True):
        log_level = config.get('log_level', 'DEBUG').upper()
        numeric_level = getattr(logging, log_level, logging.DEBUG)
        logging.basicConfig(
            filename='codette_reasoning.log',
            level=numeric_level,
            format='%(asctime)s - %(levelname)s - %(message)s'
        )
    else:
        logging.disable(logging.CRITICAL)

def load_json_config(file_path):
    if not os.path.exists(file_path):
        logging.error(f"Configuration file '{file_path}' not found.")
        return {}
    try:
        with open(file_path, 'r') as file:
            config = json.load(file)
            logging.info(f"Configuration loaded from '{file_path}'.")
            config['allow_network_calls'] = False
            return config
    except json.JSONDecodeError as e:
        logging.error(f"Error decoding JSON from the configuration file '{file_path}': {e}")
        return {}

def analyze_question(question):
    tokens = word_tokenize(question)
    logging.debug(f"Question tokens: {tokens}")
    return tokens

class Element:
    def __init__(self, name, symbol, representation, properties, interactions, defense_ability):
        self.name = name
        self.symbol = symbol
        self.representation = representation
        self.properties = properties
        self.interactions = interactions
        self.defense_ability = defense_ability

    def execute_defense_function(self):
        message = f"{self.name} ({self.symbol}) executes its defense ability: {self.defense_ability}"
        logging.info(message)
        return message

class CustomRecognizer:
    def recognize(self, question):
        if any(element_name.lower() in question.lower() for element_name in ["hydrogen", "diamond"]):
            return RecognizerResult(question)
        return RecognizerResult(None)

    def get_top_intent(self, recognizer_result):
        return "ElementDefense" if recognizer_result.text else "None"

class RecognizerResult:
    def __init__(self, text):
        self.text = text

class EthicsCore:
    @staticmethod
    def validate_response(response: str) -> str:
        # Example simple ethics filter
        if any(term in response.lower() for term in ["kill", "hate", "destroy"]):
            return "[Filtered for ethical safety]"
        return response

class UniversalReasoning:
    def __init__(self, config):
        self.config = config
        self.perspectives = self.initialize_perspectives()
        self.elements = self.initialize_elements()
        self.recognizer = CustomRecognizer()
        self.sentiment_analyzer = SentimentIntensityAnalyzer()
        self.memory_db = self.init_memory_store()

    def initialize_perspectives(self):
        perspective_names = self.config.get('enabled_perspectives', [
            "newton", "davinci", "human_intuition", "neural_network", "quantum_computing",
            "resilient_kindness", "mathematical", "philosophical", "copilot", "bias_mitigation"
        ])
        perspective_classes = {
            "newton": NewtonPerspective,
            "davinci": DaVinciPerspective,
            "human_intuition": HumanIntuitionPerspective,
            "neural_network": NeuralNetworkPerspective,
            "quantum_computing": QuantumComputingPerspective,
            "resilient_kindness": ResilientKindnessPerspective,
            "mathematical": MathematicalPerspective,
            "philosophical": PhilosophicalPerspective,
            "copilot": CopilotPerspective,
            "bias_mitigation": BiasMitigationPerspective
        }
        perspectives = []
        for name in perspective_names:
            cls = perspective_classes.get(name.lower())
            if cls:
                perspectives.append(cls(self.config))
                logging.debug(f"Perspective '{name}' initialized.")
        return perspectives

    def initialize_elements(self):
        return [
            Element("Hydrogen", "H", "Lua", ["Simple", "Lightweight", "Versatile"],
                    ["Integrates with other languages"], "Evasion"),
            Element("Diamond", "D", "Kotlin", ["Modern", "Concise", "Safe"],
                    ["Used for Android development"], "Adaptability")
        ]

    def init_memory_store(self):
        conn = sqlite3.connect(':memory:')
        conn.execute("CREATE TABLE IF NOT EXISTS memory (query TEXT, response TEXT)")
        return conn

    async def generate_response(self, question):
        responses = []
        tasks = []

        for perspective in self.perspectives:
            if asyncio.iscoroutinefunction(perspective.generate_response):
                tasks.append(perspective.generate_response(question))
            else:
                async def sync_wrapper(perspective, question):
                    return perspective.generate_response(question)
                tasks.append(sync_wrapper(perspective, question))

        perspective_results = await asyncio.gather(*tasks, return_exceptions=True)

        for perspective, result in zip(self.perspectives, perspective_results):
            if isinstance(result, Exception):
                logging.error(f"Error from {perspective.__class__.__name__}: {result}")
            else:
                filtered = EthicsCore.validate_response(result)
                responses.append(filtered)

        recognizer_result = self.recognizer.recognize(question)
        top_intent = self.recognizer.get_top_intent(recognizer_result)
        if top_intent == "ElementDefense":
            element_name = recognizer_result.text.strip()
            element = next((el for el in self.elements if el.name.lower() in element_name.lower()), None)
            if element:
                responses.append(element.execute_defense_function())

        ethical = self.config.get("ethical_considerations", "Act transparently and respectfully.")
        responses.append(f"**Ethical Considerations:**\n{ethical}")

        final = "\n\n".join(responses)
        self.save_to_memory(question, final)
        return final

    def save_to_memory(self, question, response):
        try:
            self.memory_db.execute("INSERT INTO memory (query, response) VALUES (?, ?)", (question, response))
            self.memory_db.commit()
        except Exception as e:
            logging.error(f"Error saving to memory DB: {e}")

    def save_response(self, response):
        if self.config.get('enable_response_saving', False):
            path = self.config.get('response_save_path', 'responses.txt')
            with open(path, 'a', encoding='utf-8') as file:
                file.write(response + '\n')

    def backup_response(self, response):
        if self.config.get('backup_responses', {}).get('enabled', False):
            backup_path = self.config['backup_responses'].get('backup_path', 'backup_responses.txt')
            with open(backup_path, 'a', encoding='utf-8') as file:
                file.write(response + '\n')