Spaces:
Sleeping
Sleeping
Create ai_core.py
Browse files- ai_core.py +103 -0
ai_core.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import aiohttp
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import torch
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
from typing import List, Dict, Any
|
9 |
+
from cryptography.fernet import Fernet
|
10 |
+
from jwt import encode, decode, ExpiredSignatureError
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
import blockchain_module
|
13 |
+
import speech_recognition as sr
|
14 |
+
import pyttsx3
|
15 |
+
import asyncio
|
16 |
+
|
17 |
+
from components.ai_memory import LongTermMemory
|
18 |
+
from components.multi_agent import MultiAgentSystem
|
19 |
+
from components.neural_symbolic import NeuralSymbolicProcessor
|
20 |
+
from components.future_simulation import PredictiveAI
|
21 |
+
from utils.database import Database
|
22 |
+
from utils.logger import logger
|
23 |
+
|
24 |
+
class AICoreFinalRecursive:
|
25 |
+
def __init__(self, config_path: str = "config_updated.json"):
|
26 |
+
self.config = self._load_config(config_path)
|
27 |
+
self.models = self._initialize_models()
|
28 |
+
self.memory_system = LongTermMemory()
|
29 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
|
30 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
|
31 |
+
self.http_session = aiohttp.ClientSession()
|
32 |
+
self.database = Database()
|
33 |
+
self.multi_agent_system = MultiAgentSystem()
|
34 |
+
self.neural_symbolic_processor = NeuralSymbolicProcessor()
|
35 |
+
self.predictive_ai = PredictiveAI()
|
36 |
+
self._encryption_key = Fernet.generate_key()
|
37 |
+
self.jwt_secret = "your_jwt_secret_key"
|
38 |
+
self.speech_engine = pyttsx3.init()
|
39 |
+
|
40 |
+
def _load_config(self, config_path: str) -> dict:
|
41 |
+
with open(config_path, 'r') as file:
|
42 |
+
return json.load(file)
|
43 |
+
|
44 |
+
def _initialize_models(self):
|
45 |
+
return {
|
46 |
+
"optimized_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
|
47 |
+
"tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
|
48 |
+
}
|
49 |
+
|
50 |
+
async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
|
51 |
+
try:
|
52 |
+
self.memory_system.store_interaction(user_id, query)
|
53 |
+
recursion_depth = self._determine_recursion_depth(query)
|
54 |
+
|
55 |
+
responses = await asyncio.gather(
|
56 |
+
self._recursive_refinement(query, recursion_depth),
|
57 |
+
self.multi_agent_system.delegate_task(query),
|
58 |
+
self.neural_symbolic_processor.process_query(query),
|
59 |
+
self.predictive_ai.simulate_future(query)
|
60 |
+
)
|
61 |
+
|
62 |
+
final_response = "\n\n".join(responses)
|
63 |
+
self.database.log_interaction(user_id, query, final_response)
|
64 |
+
blockchain_module.store_interaction(user_id, query, final_response)
|
65 |
+
self._speak_response(final_response)
|
66 |
+
|
67 |
+
return {
|
68 |
+
"response": final_response,
|
69 |
+
"context_enhanced": True,
|
70 |
+
"security_status": "Fully Secure"
|
71 |
+
}
|
72 |
+
except Exception as e:
|
73 |
+
logger.error(f"Response generation failed: {e}")
|
74 |
+
return {"error": "Processing failed - safety protocols engaged"}
|
75 |
+
|
76 |
+
def _determine_recursion_depth(self, query: str) -> int:
|
77 |
+
length = len(query.split())
|
78 |
+
if length < 5:
|
79 |
+
return 1
|
80 |
+
elif length < 15:
|
81 |
+
return 2
|
82 |
+
else:
|
83 |
+
return 3
|
84 |
+
|
85 |
+
async def _recursive_refinement(self, query: str, depth: int) -> str:
|
86 |
+
best_response = await self._generate_local_model_response(query)
|
87 |
+
for _ in range(depth):
|
88 |
+
new_response = await self._generate_local_model_response(best_response)
|
89 |
+
if self._evaluate_response_quality(new_response) > self._evaluate_response_quality(best_response):
|
90 |
+
best_response = new_response
|
91 |
+
return best_response
|
92 |
+
|
93 |
+
def _evaluate_response_quality(self, response: str) -> float:
|
94 |
+
return sum(ord(char) for char in response) % 100 / 100.0 # Simplified heuristic for refinement
|
95 |
+
|
96 |
+
async def _generate_local_model_response(self, query: str) -> str:
|
97 |
+
inputs = self.tokenizer(query, return_tensors="pt")
|
98 |
+
outputs = self.model.generate(**inputs)
|
99 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
def _speak_response(self, response: str):
|
102 |
+
self.speech_engine.say(response)
|
103 |
+
self.speech_engine.runAndWait()
|