Raiff1982 commited on
Commit
7cfdd9c
·
verified ·
1 Parent(s): 47d6504

Create ai_core.py

Browse files
Files changed (1) hide show
  1. ai_core.py +103 -0
ai_core.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import aiohttp
2
+ import json
3
+ import logging
4
+ import torch
5
+ import faiss
6
+ import numpy as np
7
+ from transformers import AutoModelForCausalLM, AutoTokenizer
8
+ from typing import List, Dict, Any
9
+ from cryptography.fernet import Fernet
10
+ from jwt import encode, decode, ExpiredSignatureError
11
+ from datetime import datetime, timedelta
12
+ import blockchain_module
13
+ import speech_recognition as sr
14
+ import pyttsx3
15
+ import asyncio
16
+
17
+ from components.ai_memory import LongTermMemory
18
+ from components.multi_agent import MultiAgentSystem
19
+ from components.neural_symbolic import NeuralSymbolicProcessor
20
+ from components.future_simulation import PredictiveAI
21
+ from utils.database import Database
22
+ from utils.logger import logger
23
+
24
+ class AICoreFinalRecursive:
25
+ def __init__(self, config_path: str = "config_updated.json"):
26
+ self.config = self._load_config(config_path)
27
+ self.models = self._initialize_models()
28
+ self.memory_system = LongTermMemory()
29
+ self.tokenizer = AutoTokenizer.from_pretrained(self.config["model_name"])
30
+ self.model = AutoModelForCausalLM.from_pretrained(self.config["model_name"])
31
+ self.http_session = aiohttp.ClientSession()
32
+ self.database = Database()
33
+ self.multi_agent_system = MultiAgentSystem()
34
+ self.neural_symbolic_processor = NeuralSymbolicProcessor()
35
+ self.predictive_ai = PredictiveAI()
36
+ self._encryption_key = Fernet.generate_key()
37
+ self.jwt_secret = "your_jwt_secret_key"
38
+ self.speech_engine = pyttsx3.init()
39
+
40
+ def _load_config(self, config_path: str) -> dict:
41
+ with open(config_path, 'r') as file:
42
+ return json.load(file)
43
+
44
+ def _initialize_models(self):
45
+ return {
46
+ "optimized_model": AutoModelForCausalLM.from_pretrained(self.config["model_name"]),
47
+ "tokenizer": AutoTokenizer.from_pretrained(self.config["model_name"])
48
+ }
49
+
50
+ async def generate_response(self, query: str, user_id: int) -> Dict[str, Any]:
51
+ try:
52
+ self.memory_system.store_interaction(user_id, query)
53
+ recursion_depth = self._determine_recursion_depth(query)
54
+
55
+ responses = await asyncio.gather(
56
+ self._recursive_refinement(query, recursion_depth),
57
+ self.multi_agent_system.delegate_task(query),
58
+ self.neural_symbolic_processor.process_query(query),
59
+ self.predictive_ai.simulate_future(query)
60
+ )
61
+
62
+ final_response = "\n\n".join(responses)
63
+ self.database.log_interaction(user_id, query, final_response)
64
+ blockchain_module.store_interaction(user_id, query, final_response)
65
+ self._speak_response(final_response)
66
+
67
+ return {
68
+ "response": final_response,
69
+ "context_enhanced": True,
70
+ "security_status": "Fully Secure"
71
+ }
72
+ except Exception as e:
73
+ logger.error(f"Response generation failed: {e}")
74
+ return {"error": "Processing failed - safety protocols engaged"}
75
+
76
+ def _determine_recursion_depth(self, query: str) -> int:
77
+ length = len(query.split())
78
+ if length < 5:
79
+ return 1
80
+ elif length < 15:
81
+ return 2
82
+ else:
83
+ return 3
84
+
85
+ async def _recursive_refinement(self, query: str, depth: int) -> str:
86
+ best_response = await self._generate_local_model_response(query)
87
+ for _ in range(depth):
88
+ new_response = await self._generate_local_model_response(best_response)
89
+ if self._evaluate_response_quality(new_response) > self._evaluate_response_quality(best_response):
90
+ best_response = new_response
91
+ return best_response
92
+
93
+ def _evaluate_response_quality(self, response: str) -> float:
94
+ return sum(ord(char) for char in response) % 100 / 100.0 # Simplified heuristic for refinement
95
+
96
+ async def _generate_local_model_response(self, query: str) -> str:
97
+ inputs = self.tokenizer(query, return_tensors="pt")
98
+ outputs = self.model.generate(**inputs)
99
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
100
+
101
+ def _speak_response(self, response: str):
102
+ self.speech_engine.say(response)
103
+ self.speech_engine.runAndWait()